Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 42(6): 526-539, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563224

RESUMO

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage plasticity and phenotypic heterogeneity. Castrate-resistant prostate adenocarcinoma can transition to neuroendocrine (NE) and occasionally to amphicrine, co-expressed luminal and NE, phenotypes. We developed castrate-resistant prostate cancer (CRPC) patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and NE phenotypes. To gain biological insight and to identify potential treatment targets within heterogeneous tumor cell populations, we assessed the lineage hierarchy and molecular characteristics of various CRPC tumor subpopulations. Transcriptionally similar stem/progenitor (St/Pr) cells were identified for all lineage populations. Lineage tracing in amphicrine CRPC showed that heterogeneity originated from distinct subclones of infrequent St/Pr cells that produced mainly quiescent differentiated amphicrine progeny. By contrast, adenocarcinoma CRPC progeny originated from St/Pr cells and self-renewing differentiated luminal cells. Neuroendocrine prostate cancer (NEPC) was composed almost exclusively of self-renewing St/Pr cells. Amphicrine subpopulations were enriched for secretory luminal, mesenchymal, and enzalutamide treatment persistent signatures that characterize clinical progression. Finally, the amphicrine St/Pr subpopulation was specifically depleted with an AURKA inhibitor, which blocked tumor growth. These data illuminate distinct stem cell (SC) characteristics for subtype-specific CRPC in addition to demonstrating a context for targeting differentiation-competent prostate SCs.


Assuntos
Linhagem da Célula , Células-Tronco Neoplásicas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem da Célula/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Diferenciação Celular , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Camundongos , Benzamidas , Nitrilas
2.
Sci Rep ; 8(1): 17239, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467317

RESUMO

The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25-30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Genótipo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Isoindóis/farmacologia , Masculino , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Clin Cancer Res ; 24(17): 4332-4345, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29748182

RESUMO

Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.


Assuntos
Bancos de Espécimes Biológicos , Organoides , Neoplasias da Próstata/genética , Animais , Linhagem da Célula/genética , Heterogeneidade Genética , Genótipo , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA