Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 649, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102554

RESUMO

BACKGROUND: Brassinolide, known as the seventh plant hormone, can improve the photosynthetic capacity of plants, promote plant growth and development, promote the formation of horticultural crop yield, improve the quality of horticultural crops, and also improve the ability of plants to resist biological and abiotic stresses. RESULTS: The effects of different concentrations of exogenously sprayed 2,4-epibrassinolide (EBR) on growth, physiological and photosynthetic characteristics of 'All-round large leaf coriander' were studied in substrate culture. The results showed that 0.05, 0.1, and 0.5 mg.L- 1 EBR promoted the growth of coriander and increased the aboveground fresh and dry weights, with 0.5 mg.L- 1 EBR having the most significant effect. Spraying 0.1 mg.L- 1 EBR increased the content of soluble sugars and protein of coriander leaves. Spraying 0.1 and 0.5 mg.L- 1 EBR significantly increased the chlorophyll content and photosynthetic parameters of coriander leaves, and 0.5 mg.L- 1 EBR also significantly increased the chlorophyll fluorescence parameters of coriander leaves. Spraying 0.5 mg.L- 1 EBR upregulated the expression of CsRbcS, CsFBPase, and CsAld. Correlation analysis showed that aboveground fresh weight under exogenous EBR treatment was significantly positively correlated with aboveground dry weight, plant height, Pn, Gs, Ci, and CsAld (P < 0.05), and soluble sugar content was significantly positively correlated with the number of leaves, Y(II), qP, and CsRbcS. The results of the principal component analysis (PCA) showed that there was a significant separation between the treatment and the control groups. Spraying 0.5 mg.L- 1 EBR can promote the growth of coriander, improve the quality of coriander leaves, and strengthen coriander leaf photosynthetic capacity. This study provides new insights into the promotion of coriander growth and development following the application of exogenous EBR. CONCLUSION: Exogenous EBR treatment increased coriander plant height, leaf growth and aboveground dry weight, and enhanced photosynthesis. Exogenous spraying of 0.5 mg.L- 1 EBR had the most significant effect.


Assuntos
Coriandrum , Fotossíntese , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo
2.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178544

RESUMO

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Assuntos
Brassica , Compostagem , Bovinos , Feminino , Animais , Ovinos , Solo/química , Esterco , Fertilizantes , Melhoramento Vegetal , Nutrientes
3.
Microorganisms ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110447

RESUMO

Composting, planting, and breeding waste for return to the field is the most crucial soil improvement method under the resource utilization of agricultural waste. However, how the vegetable yield and rhizosphere soil environment respond to different composts is still unknown. Therefore, eight formulations were designed for compost fermentation using agricultural waste [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR), and corn straw (CS)] without fertilizer (CK1) and local commercial organic fertilizer (CK2) as controls to study the yield and rhizosphere soil environment of greenhouse zucchini in response to different planting and breeding waste compost. Applying planting and breeding waste compost significantly increased the soil's organic matter and nutrient content. It inhibited soil acidification, which T4 (SM:TV:CS = 6:3:1) and T7 (SM:TV:MR:CS = 6:2:1:1) treatments affected significantly. Compared to CK2 treatment, T4 and T7 treatments showed a greater increase, with a significant increase of 14.69% and 11.01%, respectively. Therefore, T4, T7, and two control treatments were selected for high-throughput sequencing based on yield performance. Compared with the CK1 treatment, although multiple applications of chemical fertilizers led to a decrease in bacterial and fungal richness, planting and breeding waste compost maintained bacterial diversity and enhanced fungal diversity. Compared to CK2, the relative abundance increased in T7-treated Proteobacteria (Sphingomonas, Pseudomonas, and Lysobacter) and T4-treated Bacteroidetes (Flavobacterium) among bacteria. An increase in T4-treated Ascomycota (Zopfiella and Fusarium) and Basidiomycota among fungi and a decrease in T7-treated Mortierellomycota have been observed. Functional predictions of the bacterial Tax4Fun and fungal FUNGuild revealed that applying planting and breeding waste compost from the T4 treatment significantly increased the abundance of soil bacterial Metabolism of Cities, Genetic Information Processing, and Cellular Processes decreased the abundance of Pathotroph and Saprotroph-Symbiotroph fungi and increased the abundance of Saprotroph fungi. Overall, planting and breeding waste compost increased zucchini yield by improving soil fertility and microbial community structure. Among them, T4 treatment has the most significant effect, so T4 treatment can be selected as the optimized formulation of local commercial organic fertilizer. These findings have valuable implications for sustainable agricultural development.

4.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203005

RESUMO

Growing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins. The greenhouse used in the study consisted of a plastic film for growing pumpkins. Five different sensors labeled from A1 to A5 measured the air temperature, humidity, soil temperature, soil humidity, and illumination at five different locations. We used two methods, error-based sensor placement and entropy-based sensor placement, to evaluate optimisation. We selected A3 sensor locations where the monitored data were close to the reference value, i.e., the average data of all measurement locations and parameters. Using this method, we selected sensor positions to monitor the influence of external parameters on the maturity of pumpkins. These methods enable the determination of optimal sensor locations to represent the entire facility environment and detect areas with significant environmental disparities. Our study provides an accurate measurement of the internal environment of a greenhouse and properly selects the base installation locations of sensors in the pumpkin greenhouse.


Assuntos
Cucurbita , Entropia , Ambiente Controlado , Umidade , Solo
5.
Front Plant Sci ; 13: 999051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570895

RESUMO

Tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is the main cause of tip-burn. In order to investigate whether exogenous brassinosteroids (BRs) can alleviate tip-burn induced by calcium (Ca2+) deficiency and its mechanism, in this study, Ca2+ deficiency in nutrient solution was used to induced tip-burn, and then distilled water and BRs were sprayed on leaves to observe the tip-burn incidence of mini Chinese cabbage. The tip-burn incidence and disease index, leaf area, fluorescence parameters (Fv/Fm, NPQ, qP andφPSII) and gas exchange parameters (Tr, Pn, Gs and Ci), pigment contents, cell wall components, mesophyll cell ultrastructure and the expression of genes related to chlorophyll degradation were measured. The results showed that exogenous BRs reduced the tip-burn incidence rate and disease index of mini Chinese cabbage, and the tip-burn incidence rate reached the highest on the ninth day after treatment. Exogenous BRs increased the contents of cellulose, hemifiber, water-soluble pectin in Ca2+ deficiency treated leaves, maintaining the stability of cell wall structure. In addition, BRs increased photosynthetic rate by increasing the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose 1,6-bisphosphatase (FBPase) related to Calvin cycle, maintaining relatively complete chloroplast structure and higher chlorophyll content via down-regulating the expression of BrPPH1 and BrPAO1 genes related to chlorophyll degradation. In conclusion, exogenous BRs alleviated calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis.

6.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142872

RESUMO

Brassinosteroids (BRs), a novel plant hormone, are widely involved in plant growth and stress response processes. Nitric oxide (NO), as an important gas signaling molecule, can regulate target protein activity, subcellular localization and function in response to various stresses through post-translational S-nitrosylation modifications. However, the relationship between BR and NO in alleviating low-temperature stress of mini Chinese cabbage remains unclear. The hydroponic experiment combined with the pharmacological and molecular biological method was conducted to study the alleviating mechanism of BR at low temperature in mini Chinese cabbage. The results showed that low temperature inhibited the growth of mini Chinese cabbage seedlings, as evidenced by dwarf plants and yellow leaves. Treatment with 0.05 mg/L BR and 50 µM NO donor S-nitrosoglutathione (GSNO) significantly increased the leaf area, stem diameter, chlorophyll content, dry and fresh weight and proline content. Meanwhile, the malondialdehyde (MDA) content in 0.05 mg/L BR- and 50 µM GSNO-treated leaves were significantly lower than those in other treated leaves under low-temperature conditions. In addition, BR and GSNO applications induced an increase in NO and S-nitrosothiol (SNO) levels in vivo under low-temperature stress. Similarly, spraying BR after the elimination of NO also increased the level of S-nitrosylation in vivo, while spraying GSNO after inhibiting BR biosynthesis decreased the level of NO and SNO in vivo. In contrast, the S-nitrosoglutathione reductase (BrGSNOR) relative expression level and GSNOR enzyme activity were downregulated and inhibited by BR treatment, GSNO treatment and spraying BR after NO clearance, while the relative expression level of BrGSNOR was upregulated and GSNOR enzyme activity was also increased when spraying GSNO after inhibiting BR synthesis. Meanwhile, the biotin switch assay showed that exogenous BR increased the level of total nitrosylated protein in vivo under low-temperature stress. These results suggested that BR might act as an upstream signal of NO, induced the increase of NO content in vivo and then induced the protein S-nitrosylation modification to alleviate the damage of mini Chinese cabbage seedlings under low-temperature stress.


Assuntos
Brassica rapa , Brassica , S-Nitrosotióis , Biotina/metabolismo , Brassica/metabolismo , Brassica rapa/metabolismo , Brassinosteroides/metabolismo , China , Clorofila/metabolismo , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo , Plântula/metabolismo , Temperatura
7.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406914

RESUMO

As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here, cucumber (Cucumis sativus 'Xinchun NO. 4') explants were used to investigate the role of H2S in adventitious root development under salt stress. The results show that sodium chloride (NaCl) at 10 mM produced moderate salt stress. The 100 µM sodium hydrosulfide (NaHS) treatment, a H2S donor, increased root number and root length by 38.37% and 66.75%, respectively, indicating that H2S effectively promoted the occurrence of adventitious roots in cucumber explants under salt stress. The results show that under salt stress, NaHS treatment reduced free proline content and increased the soluble sugar and soluble protein content during rooting. Meanwhile, NaHS treatment enhanced the activities of antioxidant enzymes [peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)], increased the content of ascorbic (ASA) and glutathione (GSH), reduced the content of hydrogen peroxide (H2O2) and the rate of superoxide radical (O2-) production, and decreased relative electrical conductivity (REC) and the content of malondialdehyde (MDA). However, the NaHS scavenger hypotaurine (HT) reversed the above effects of NaHS under salt stress. In summary, H2S promoted adventitious root development under salt stress through regulating osmotic substance content and enhancing antioxidant ability in explants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA