Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Acta Pharmacol Sin ; 45(7): 1477-1491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538716

RESUMO

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Diabetes Mellitus Experimental , Transdução de Sinais , Cicatrização , Quinases Associadas a rho , Animais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Humanos , Diabetes Mellitus Experimental/metabolismo , Masculino , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino
2.
Acta Pharmacol Sin ; 45(2): 327-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845344

RESUMO

Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in ß cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic ß-cells, desipramine (10 µM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 µM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic ß-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.


Assuntos
Curcumina , Camundongos , Animais , Curcumina/farmacologia , Desipramina/farmacologia , Glicemia , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Antidepressivos/farmacologia
3.
BMC Complement Med Ther ; 23(1): 415, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978381

RESUMO

BACKGROUND: Cardiovascular disease and cancer are the main causes of morbidity and mortality worldwide. Studies have shown that these two diseases may have some common risk factors. Atorvastatin is mainly used for the treatment of atherosclerosis in clinic. A large number of studies show that atorvastatin may produce anti-tumor activities. This study aimed to predict the common targets of atorvastatin against atherosclerosis and non-small cell lung cancer (NSCLC) based on network pharmacology. METHODS: The target genes of atherosclerosis and NSCLC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The disease-target-component model map and the core network were obtained using Cytoscape 3.7.1. The MTS and wound healing assay were used to detect the effect of atorvastatin on cell viability and migration of A549 cells. The expression of potential common target genes of atorvastatin against atherosclerosis and NSCLC were confirmed in A549 cells and lung cancer tissues of patients. RESULTS: We identified 15 identical pathogenic genes, and four of which (MMP9, MMP12, CD36, and FABP4) were considered as the key target genes of atorvastatin in anti-atherosclerosis and NSCLC. The MTS and wound healing assays revealed that atorvastatin decreased A549 cells migration significantly. Atorvastatin markedly decreased the expression of MMP9, MMP12, CD36, and FABP4 in A549 cells and patients were treated with atorvastatin. CONCLUSIONS: This study demonstrated 15 common pathogenic genes in both atherosclerosis and NSCLC. And verified that MMP 9, MMP 12, CD 36 and FABP 4 might be the common target genes of atorvastatin in anti-atherosclerosis and NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Metaloproteinase 12 da Matriz/uso terapêutico
4.
Biochem Pharmacol ; 216: 115807, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37716621

RESUMO

Small cell lung cancer (SCLC) is a highly lethal subtype of lung cancer with few therapeutic options; therefore, the identification of new targets and drugs with potent combination therapy is desirable. We previously screened BH3 mimetics from a natural product library, and in this study, we validated nobiletin as a BH3 mimetic. Specifically, we observed its combination potential and mechanism with vorinostat in SCLC in vitro and in vivo. The results showed that combination treatment with nobiletin and vorinostat reduced the proliferation of SCLC H82 cells and increased the levels of apoptotic proteins such as cleaved caspase-9 and cleaved PARP. The combination treatment increased LC3-II expression and induced autophagic cell death. In addition, this treatment significantly inhibited H82 cell xenograft SCLC tumor growth in nude mice. The combination treatment with nobiletin and vorinostat efficiently increased autophagy by inhibiting the PI3K-AKT-mTOR pathway and promoting dissociation of the BCL-2 and Beclin 1 complex, increasing the level of isolated Beclin 1 to stimulate autophagy. Molecular docking and surface plasmon resonance analysis showed that nobiletin stably bound to the BCL-2, BCL-XL and MCL-1 proteins with high affinity in a concentration-dependent manner. These results suggest that nobiletin is a BH3-only protein mimetic. Furthermore, the combination of nobiletin with vorinostat increased histone H3K9 and H3K27 acetylation levels in SCLC mouse tumor tissue and enhanced the expression of the BH3-only proteins BIM and BID. We conclude that nobiletin is a novel natural BH3 mimetic that can cooperate with vorinostat to induce apoptosis and autophagy in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Proteína Beclina-1 , Camundongos Nus , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Autofagia , Linhagem Celular Tumoral
5.
Nat Commun ; 14(1): 5004, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591889

RESUMO

MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Citoplasma , Citosol , Ligantes , Prurido
6.
Cell Biosci ; 13(1): 154, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605246

RESUMO

BACKGROUND: Phosphoglycerate mutase 5 (PGAM5), a phosphatase involved in mitochondrial homeostasis, is reported to be closely related to the metabolic stress induced by high-fat diet (HFD) or cold. In this study, we aimed to investigate the effects of PGAM5 on hepatic steatosis, inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). METHODS AND RESULTS: We generated PGAM5 global knockout (GKO) mice and their wildtype (WT) littermates using CRISPR/CAS9. The mice were fed with a high fat high fructose (HFHF) diet for 12 weeks or a methionine choline-deficient (MCD) diet (methionine choline supplemented (MCS) as control) for 6 weeks. Hepatic PGAM5 expression was up-regulated in humans with NASH and WT mice fed with HFHF and MCS, and reduced in WT mice fed with MCD diet. In HFHF-fed mice, GKO had reduced body weight, hepatic triglyceride (TG) content and serum transaminase along with decreased hepatic pro-inflammatory and pro-fibrotic responses compared with their WT control. GKO had increased expression of antioxidative gene glutathione peroxidase-6 (GPX6) and activation of mammalian target of rapamycin (mTOR). In mice fed with MCS diet, GKO significantly increased serum TNF-α and IL-6 and decreased hepatic GPX6 mRNA expression. There was no difference in hepatic steatosis, inflammation or fibrosis between GKO and WT mice fed with MCD diet. We investigated the role of PGAM5 deficiency in a variety of cell types. In differentiated THP-1 cells, PGAM5 silencing significantly increased pro-inflammatory cytokine secretion and decreased antioxidative proteins, including nuclear factor erythroid 2- related factors (NRF2), heme oxygenase-1 (HO-1) and GPX6 without affecting mTOR activity. In HepG2 cells with steatosis, PGAM5 knockdown reduced insulin sensitivity, increased mTOR phosphorylation and reduced the expression of NRF2, catalase (CAT), HO-1 and GPX6. Conversely, PGAM5 knockdown reduced TG accumulation, increased insulin sensitivity, and increased antioxidative genes in 3T3-L1 cells, despite the up-regulation in mTOR phosphorylation. CONCLUSIONS: PGAM5-KO relieved hepatic steatosis and inflammation in HFHF model, promoted inflammation in MCS-fed mice and had no effects on the MCD-fed model. The distinct effects may be owing to the different effects of PGAM5-KO on anti-oxidative pathways in energy-dependent, possible involves mTOR, and/or cell type-dependent manner. Our findings suggest that PGAM5 can be a potential therapeutic target for NASH.

7.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37478163

RESUMO

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Assuntos
Dinoprostona , Transdução de Sinais , Dinoprostona/metabolismo , Transdução de Sinais/fisiologia , Receptores de Prostaglandina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hormônios , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo
8.
Open Life Sci ; 18(1): 20220614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250844

RESUMO

This research focuses on macrofungi in Baotianman Biosphere Reserve and their relationships with plant ecosystems. The findings demonstrate the reserve's macrofungal resources. The study collected 832 specimens, among which 351 macrofungi species were identified, belonging to six classes, 19 orders, 54 familiae, and 124 genera, and one new species of Abortiporus was found. Among them, 11 familiae with a total of 231 species were dominated, accounting for 20.37% of the total number of familiae and 65.81% of the total number of species; 14 genera with a total of 147 species were dominated, accounting for about 11.38% the total number of genera and 41.88% of the total number of species. The richness of macrofungi at the species level was considerably different across the four vegetation types in the reserve, showing that the vegetation types had a bigger influence on macrofungi. In the evaluation of macrofungal resources, a total of 196 species of edible fungi, 121 species of medicinal fungi, 52 species of poisonous fungi, and 37 species of macrofungi with unclear economic value were counted. Abortiporus baotianmanensis is a new species of podoscyphaceae in the genus Abortiporus. The new species display the reserve's richness. Next, the project seeks to generate and conserve macrofungal resources.

9.
Sci Bull (Beijing) ; 68(4): 373-375, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36759288
10.
Adv Exp Med Biol ; 1398: 125-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717490

RESUMO

Recent studies have shown that aquaporins (AQPs) are involved in the regulation of cardiovascular function and the development of related diseases, especially in cerebral ischemia, congestive heart failure, hypertension, and angiogenesis. Therefore, further studies are needed to elucidate the mechanism accounting for the association between AQPs and vascular function-related diseases, which may lead to novel approaches to the prevention and treatment of those diseases. Here we will discuss the expression and physiological roles of AQPs in vascular tissues and summarize recent progress in the research on AQPs related cardiovascular diseases.


Assuntos
Aquaporinas , Sistema Cardiovascular , Insuficiência Cardíaca , Hipertensão , Humanos , Aquaporinas/genética , Aquaporinas/metabolismo , Sistema Cardiovascular/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo
11.
Acta Pharmacol Sin ; 44(1): 44-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35882957

RESUMO

It is of great clinical significance to develop potential novel strategies to prevent diabetic cardiovascular complications. Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic vascular complications. In the present study we evaluated whether low-dose nifedipine could rescue impaired EPC-mediated angiogenesis and prevent cardiovascular complications in diabetic mice. Diabetes was induced in mice by five consecutive injections of streptozotocin (STZ, 60 mg·kg-1·d-1, i.p.). Diabetic mice were treated with low-dose nifedipine (1.5 mg·kg-1·d-1, i.g.) for six weeks. Then, circulating EPCs in the peripheral blood were quantified, and bone marrow-derived EPCs (BM-EPCs) were prepared. We showed that administration of low-dose nifedipine significantly increased circulating EPCs, improved BM-EPCs function, promoted angiogenesis, and reduced the cerebral ischemic injury in diabetic mice. Furthermore, we found that low-dose nifedipine significantly increased endothelial nitric oxide synthase (eNOS) expression and intracellular NO levels, and decreased the levels of intracellular O2.- and thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) in BM-EPCs of diabetic mice. In cultured BM-EPCs, co-treatment with nifedipine (0.1, 1 µM) dose-dependently protected against high-glucose-induced impairment of migration, and suppressed high-glucose-induced TSP-1 secretion and superoxide overproduction. In mice with middle cerebral artery occlusion, intravenous injection of diabetic BM-EPCs treated with nifedipine displayed a greater ability to promote local angiogenesis and reduce cerebral ischemic injury compared to injection of diabetic BM-EPCs treated with vehicle, and the donor-derived BM-EPCs homed to the recipient ischemic brain. In conclusion, low-dose nifedipine can enhance EPCs' angiogenic potential and protect against cerebral ischemic injury in diabetic mice. It is implied that chronic treatment with low-dose nifedipine may be a safe and economic manner to prevent ischemic diseases (including stroke) in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Camundongos , Animais , Células Progenitoras Endoteliais/metabolismo , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Trombospondina 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Isquemia/metabolismo , Neovascularização Fisiológica , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas
12.
Front Endocrinol (Lausanne) ; 13: 910907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966076

RESUMO

Background: Diabetic kidney disease (DKD), one of the main complications of diabetes mellitus (DM), has become a frequent cause of end-stage renal disease. A clinically convenient, non-invasive approach for monitoring the development of DKD would benefit the overall life quality of patients with DM and contribute to lower medical burdens through promoting preventive interventions. Methods: We utilized 5hmC-Seal to profile genome-wide 5-hydroxymethylcytosines in plasma cell-free DNA (cfDNA). Candidate genes were identified by intersecting the differentially hydroxymethylated genes and differentially expressed genes from the GSE30528 and GSE30529. Then, a protein interaction network was constructed for the candidate genes, and the hub genes were identified by the MCODE and cytoHubba algorithm. The correlation analysis between the hydroxymethylation level of the hub genes and estimated glomerular filtration rate (eGFR) was carried out. Finally, we demonstrated differences in expression levels of the protein was verified by constructing a mouse model of DKD. In addition, we constructed a network of interactions between drugs and hub genes using the Comparative Toxicogenomics Database. Results: This study found that there were significant differences in the overall distribution of 5hmC in plasma of patients with DKD, and an alteration of hydroxymethylation levels in genomic regions involved in inflammatory pathways which participate in the immune response. The final 5 hub genes, including (CTNNB1, MYD88, CD28, VCAM1, CD44) were confirmed. Further analysis indicated that this 5-gene signature showed a good capacity to distinguish between DKD and DM, and was found that protein levels were increased in renal tissue of DKD mice. Correlation analysis indicated that the hydroxymethylation level of 5 hub genes were nagatively correlated with eGFR. Toxicogenomics analysis showed that a variety of drugs for the treatment of DKD can reduce the expression levels of 4 hub genes (CD44, MYD88, VCAM1, CTNNB1). Conclusions: The 5hmC-Seal assay was successfully applied to the plasma cfDNA samples from a cohort of DM patients with or without DKD. Altered 5hmC signatures indicate that 5hmC-Seal has the potential to be a non-invasive epigenetic tool for monitoring the development of DKD and it provides new insight for the future molecularly targeted anti-inflammation therapeutic strategies of DKD.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus , Nefropatias Diabéticas , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Ácidos Nucleicos Livres/genética , Nefropatias Diabéticas/genética , Humanos , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo
13.
Acta Pharmacol Sin ; 43(10): 2474-2481, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35132191

RESUMO

Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.


Assuntos
DNA , Fatores de Transcrição , Microscopia Crioeletrônica , DNA/metabolismo , Humanos , Ligantes , Proteínas Mutantes , Fatores de Transcrição/metabolismo
14.
Eur J Pharmacol ; 916: 174603, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34793771

RESUMO

Acute kidney injury (AKI) is a serious threat to human health. Clinically, ischemia-reperfusion (I/R) injury is considered one of the most common contributors to AKI. Emodin has been reported to alleviate I/R injury in the heart, brain, and small intestine in rats and mice through its anti-inflammatory effects. The present study investigated whether emodin improved AKI induced by I/R and elucidated the molecular mechanisms. We used a mouse model of renal I/R injury and human renal tubular epithelial cell model of hypoxia/reoxygenation (H/R) injury. Ischemia/reperfusion resulted in renal dysfunction. Pretreatment with emodin ameliorated renal injury in mice following I/R injury. Emodin reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial reactive oxygen species and accelerated the recovery of adenosine triphosphate both in vivo and in vitro. Emodin prevented mitochondrial fission and restored the balance of mitochondrial dynamics. The phosphorylation of dynamin-related protein 1 (DRP1) at Ser616, a master regulator of mitochondrial fission, was upregulated in both models of I/R and H/R injury, and this upregulation was blocked by emodin. Using computational cognate protein kinase prediction and specific kinase inhibitors, we found that emodin inhibited the phosphorylation of calcium/calmodulin-dependent protein kinase II (https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554), thereby inhibiting its kinase activity and reducing the phosphorylation of DRP1 at Ser616. The results demonstrated that emodin pretreatment could protect renal function by improving mitochondrial dysfunction induced by I/R.


Assuntos
Injúria Renal Aguda/prevenção & controle , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Dinaminas/antagonistas & inibidores , Emodina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Dinaminas/metabolismo , Emodina/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/patologia
15.
J Biol Chem ; 297(4): 101160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480896

RESUMO

Pheromone receptors (PRs) recognize specific pheromone compounds to guide the behavioral outputs of insects, which are the most diverse group of animals on earth. The activation of PRs is known to couple to the calcium permeability of their coreceptor (Orco) or putatively with G proteins; however, the underlying mechanisms of this process are not yet fully understood. Moreover, whether this transverse seven transmembrane domain (7TM)-containing receptor is able to couple to arrestin, a common effector for many conventional 7TM receptors, is unknown. Herein, using the PR BmOR3 from the silk moth Bombyx mori and its coreceptor BmOrco as a template, we revealed that an agonist-induced conformational change of BmOR3 was transmitted to BmOrco through transmembrane segment 7 from both receptors, resulting in the activation of BmOrco. Key interactions, including an ionic lock and a hydrophobic zipper, are essential in mediating the functional coupling between BmOR3 and BmOrco. BmOR3 also selectively coupled with Gi proteins, which was dispensable for BmOrco coupling. Moreover, we demonstrated that trans-7TM BmOR3 recruited arrestin in an agonist-dependent manner, which indicates an important role for BmOR3-BmOrco complex formation in ionotropic functions. Collectively, our study identified the coupling of G protein and arrestin to a prototype trans-7TM PR, BmOR3, and provided important mechanistic insights into the coupling of active PRs to their downstream effectors, including coreceptors, G proteins, and arrestin.


Assuntos
Bombyx , Proteínas de Insetos , Receptores Odorantes , Animais , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Domínios Proteicos , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
Clin Immunol ; 228: 108751, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33974996

RESUMO

Tumor-infiltrating immune cells (TIICs) and immune-related genes (IRGs) of melanoma are associated with prognosis. However, whether the combination of TIICs and IRGs can be used as prognostic clinical biomarkers are still unknown. Here, we downloaded transcription profile of melanoma from TCGA. Then, three TIICs and four IRGs that associated with the overall survival were used to constructed the Immune Cell Score (ICS) and Immune Gene Score (IGS) respectively. Next, to improve the accuracy of ICS and IGS for melanoma prognostic, we combined the ICS and IGS constructed the Immune Cell and Gene Score (ICGS) model. ICGS had higher accuracy and predictive ability than ICS or IGS. Meanwhile, ICGS model reliability was validated by two independent datasets of melanoma. Functional enrichment and protein-protein interaction network analysis based on ICGS were performed to identify T cell mediated immune and inflammatory response are highly associated with melanoma.


Assuntos
Biomarcadores , Melanoma/etiologia , Melanoma/mortalidade , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/diagnóstico , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Fatores de Risco , Transdução de Sinais , Transcriptoma
17.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806369

RESUMO

Isothiazolinone (IT) biocides are potent antibacterial substances commonly used as preservatives or disinfectants, and 2-n-Octyl-4-isothiazolin-3-one (OIT; octhilinone) is a common IT biocide that is present in leather products, glue, paints, and cleaning products. Although humans are exposed to OIT through personal and industrial use, the potentially deleterious effects of OIT on human health are still unknown. To investigate the effects of OIT on the vascular system, which is continuously exposed to xenobiotics through systemic circulation, we treated brain endothelial cells with OIT. OIT treatment significantly activated caspase-3-mediated apoptosis and reduced the bioenergetic function of mitochondria in a bEnd.3 cell-based in vitro blood-brain barrier (BBB) model. Interestingly, OIT significantly altered the thiol redox status, as evidenced by reduced glutathione levels and protein S-nitrosylation. The endothelial barrier function of bEnd.3 cells was significantly impaired by OIT treatment. OIT affected mitochondrial dynamics through mitophagy and altered mitochondrial morphology in bEnd.3 cells. N-acetyl cysteine significantly reversed the effects of OIT on the metabolic capacity and endothelial function of bEnd.3 cells. Taken together, we demonstrated that the alteration of the thiol redox status and mitochondrial damage contributed to OIT-induced BBB dysfunction, and we hope that our findings will improve our understanding of the potential hazardous health effects of IT biocides.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Desinfetantes/toxicidade , Tiazóis/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Desinfetantes/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tiazóis/antagonistas & inibidores , Proteínas de Junções Íntimas/metabolismo
19.
Langmuir ; 36(29): 8560-8569, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32635735

RESUMO

Superwetting materials show distinct advantages in interfacial applications such as oil-water separation. However, it remains a challenge to solve water-accelerated fatigue of lubricating oils owing to the poor mechanical durability of superhydrophobic surfaces and the intractable emulsions stabilized by additives. In this work, a robust superhydrophobic membrane for solving water-accelerated fatigue of lubricating oils containing zinc dialkyldithiophosphate (ZDDP) as a typical antiwear additive is presented. An all-inorganic coating is constructed by SiO2 nanoparticles and aluminum phosphate using a simple spray-coating method. After silanization, the prepared membrane can extremely repel water and effectively separate ZDDP-stabilized water-in-lubricating oil emulsions (the purities of the collected lubricating oils are over 99.995%), even after sand impingement for 100 cycles. Ball-on-disk tribological tests at severe contact pressures reveal that the reclaimed lubricating oils recover the protective ability, and the catalytic dehydrogenation of lubricating oil is dramatically suppressed to avoid producing a mass of unwanted carbon-based wear debris. This work advances the development of superwetting materials in the lubricating oil industry.

20.
Nanoscale ; 12(21): 11703-11710, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32441720

RESUMO

Water is recognized as a contaminant in lubricating oils. Recently, interfacial materials with special wettability have been broadly developed for oil-water separation. However, solving lubricating oil failure caused by water remains a challenge. Here, a robust superhydrophobic membrane is presented to effectively remove water in lubricating oils to recover their lubricating capability. Compared to pure lubricating oils without or with an additive, lubricating oils collected from their emulsions using the superhydrophobic membrane have an equivalent friction coefficient and wear volume, which are much lower than that of lubricating oils contaminated by water. Water in lubricating oils accelerates the oxidation of metallic substrates and wear corrosion. Moreover, the metallic ions dissolved in water-containing lubricating oils induce the catalytic dehydrogenation of lubricating oils, leading to the deposition of a good deal of carbon-based wear debris. Importantly, the prepared membrane shows steady performance in regard to extreme water repellency, high-efficiency purification of lubricating oils, and low wear volume even after harsh mechanical damage. Robust interfacial materials have potential advantages in practically solving lubricating oil failure caused by water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA