Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FEBS J ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708720

RESUMO

Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.

2.
Anal Chem ; 94(20): 7329-7338, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549177

RESUMO

Mass spectrometry (MS) easily detects C-mannosylated peptides from purified proteins but not from complex biological samples. Enrichment of specific glycopeptides by lectin affinity prior to MS analysis has been widely applied to support glycopeptide identification but was until now not available for C-mannosylated peptides. Here, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) and show that, in addition to its previously demonstrated high-mannose N-glycan binding capability, this lectin is able to retain C- and O-mannosylated peptides. Besides testing binding abilities to standard peptides, we applied BC2L-A affinity to enrich C-mannosylated peptides from complex samples of tryptic digests of HEK293 and MCF10A whole cell extracts, which led to the identification of novel C-mannosylation sites. In conclusion, BC2L-A enabled specific enrichment of C- and O-mannosylated peptides and might have superior properties over other mannose binding lectins for this purpose.


Assuntos
Burkholderia cenocepacia , Manose , Burkholderia cenocepacia/química , Burkholderia cenocepacia/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas/química , Manose/química
3.
Angew Chem Int Ed Engl ; 59(46): 20659-20665, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745319

RESUMO

Despite the great interest in glycoproteins, structural information reporting on conformation and dynamics of the sugar moieties are limited. We present a new biochemical method to express proteins with glycans that are selectively labeled with NMR-active nuclei. We report on the incorporation of 13 C-labeled mannose in the C-mannosylated UNC-5 thrombospondin repeat. The conformational landscape of the C-mannose sugar puckers attached to tryptophan residues of UNC-5 is characterized by interconversion between the canonical 1 C4 state and the B03 / 1 S3 state. This flexibility may be essential for protein folding and stabilization. We foresee that this versatile tool to produce proteins with selectively labeled C-mannose can be applied and adjusted to other systems and modifications and potentially paves a way to advance glycoprotein research by unravelling the dynamical and conformational properties of glycan structures and their interactions.

4.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868591

RESUMO

Previous studies demonstrated importance of C-mannosylation for efficient protein secretion. To study its impact on protein folding and stability, we analyzed both C-mannosylated and non-C-mannosylated thrombospondin type 1 repeats (TSRs) of netrin receptor UNC-5. In absence of C-mannosylation, UNC-5 TSRs could only be obtained at low temperature and a significant proportion displayed incorrect intermolecular disulfide bridging, which was hardly observed when C-mannosylated. Glycosylated TSRs exhibited higher resistance to thermal and reductive denaturation processes, and the presence of C-mannoses promoted the oxidative folding of a reduced and denatured TSR in vitro. Molecular dynamics simulations supported the experimental studies and showed that C-mannoses can be involved in intramolecular hydrogen bonding and limit the flexibility of the TSR tryptophan-arginine ladder. We propose that in the endoplasmic reticulum folding process, C-mannoses orient the underlying tryptophan residues and facilitate the formation of the tryptophan-arginine ladder, thereby influencing the positioning of cysteines and disulfide bridging.


Assuntos
Proteínas de Caenorhabditis elegans/química , Manose/química , Proteínas de Membrana/química , Dobramento de Proteína , Receptores de Superfície Celular/química , Trombospondinas/química , Animais , Arginina/química , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/ultraestrutura , Cisteína/química , Dissulfetos/química , Drosophila melanogaster/química , Drosophila melanogaster/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Glicosilação , Ligação de Hidrogênio , Manose/genética , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura , Trombospondinas/genética , Triptofano/química , Triptofano/genética
5.
Proc Natl Acad Sci U S A ; 114(10): 2574-2579, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202721

RESUMO

Thrombospondin type 1 repeats (TSRs) occur in diverse proteins involved in adhesion and signaling. The two extracellular TSRs of the netrin receptor UNC5A contain WxxWxxWxxC motifs that can be C-mannosylated on all tryptophans. A single C-mannosyltransferase (dumpy-19, DPY-19), modifying the first two tryptophans, occurs in Caenorhabditis elegans, but four putative enzymes (DPY-19-like 1-4, DPY19L1-4) exist in mammals. Single and triple CRISPR-Cas9 knockouts of the three homologs that are expressed in Chinese hamster ovary cells (DPY19L1, DPY19L3, and DPY19L4) and complementation experiments with mouse homologs showed that DPY19L1 preferentially mannosylates the first two tryptophans and DPY19L3 prefers the third, whereas DPY19L4 has no function in TSR glycosylation. Mannosylation by DPY19L1 but not DPY19L3 is required for transport of UNC5A from the endoplasmic reticulum to the cell surface. In vertebrates, a new C-mannosyltransferase has apparently evolved to increase glycosylation of TSRs, potentially to increase the stability of the structurally essential tryptophan ladder or to provide additional adhesion functions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Adesão Celular/genética , Proteínas de Membrana/genética , Receptores de Netrina/metabolismo , Motivos de Aminoácidos/genética , Animais , Antígenos CD36/metabolismo , Células CHO , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Manose/metabolismo , Camundongos , Receptores de Netrina/genética , Sequências Repetitivas de Aminoácidos/genética , Trombospondina 1/genética
6.
Mol Cell ; 50(2): 295-302, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23562325

RESUMO

Among the different types of protein glycosylation, C-mannosylation of tryptophan residues stands out because of the unique linkage formed between sugar and protein. Instead of the typical O- or N-glycosidic linkage, a C-C bond is used for attachment of a single mannose. C-mannose is characteristically found in thrombospondin type 1 repeats and in the WSXWS motif of type I cytokine receptors. The genetic base of the enzymatic activity catalyzing C-mannosylation was not known. Here we demonstrate that Caenorhabditis elegans DPY-19 is a C-mannosyltransferase. DPY-19 exhibits topological and sequential homology to the N-glycan oligosaccharyltransferase, highlighting an evolutionary link between N- and C-glycosylation. We show that the C. elegans surface receptors MIG-21 and UNC-5 are acceptor substrates of DPY-19 and that C-mannosylation is essential for the secretion of soluble MIG-21. Thereby, our data provide an explanation for the previously described identical Q neuroblast migration phenotypes of dpy-19 and mig-21 mutants.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Manose/metabolismo , Manosiltransferases/química , Proteínas de Membrana/química , Anotação de Sequência Molecular , Dados de Sequência Molecular , Receptores de Superfície Celular/metabolismo , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos , Trombospondinas/química
7.
Glycobiology ; 23(3): 303-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23135544

RESUMO

LARGE (like-glycosyltransferase) and LARGE2 (glycosyltransferase-like 1B (GYLTL1B)) are homologous Golgi glycosyltransferases possessing two catalytic domains with homology to members of glycosyltransferase families GT8 and GT49. Mutations in human and mouse Large result in muscular dystrophy due to underglycosylation of dystroglycan. The systemic function of LARGE2 is unknown, but at a cellular level the enzyme can substitute for LARGE in glycosylating dystroglycan. Here, we show that LARGE2 catalyzes the same glycosylation reaction as LARGE. It is a bifunctional glycosyltransferase using uridine diphosphate (UDP)-xylose (Xyl) and UDP-glucuronic acid (GlcA) as donor sugars to produce a xyloglucuronan with alternating Xyl and GlcA residues.


Assuntos
Glicosiltransferases/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato Xilose/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA