Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Access Microbiol ; 6(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361655

RESUMO

Xanthomonas euvesicatoria the primary causal agent of bacterial spot of pepper (BSP), poses a significant global challenge, resulting in severe defoliation and yield losses for pepper growers. We present the whole genome sequences of eight X. euvesicatoria strains associated with BSP in Vietnam. These genomes contribute to representation of pepper production regions in the global sample of X. euvesicatoria genomes, enabling the development of precise global disease management strategies.

2.
Plants (Basel) ; 12(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570916

RESUMO

A huge amount of orange peel waste is annually discharged into the environment. Processing of this waste for the control of post-harvest fruit diseases can reduce environmental pollution. Essential oils (EOs) from fruit peels of Citrus reticulata × sinensis (Sanh cultivar) and Citrus sinensis (Xoan, Mat and Navel cultivar) were investigated for their ability to control anthracnose caused by Colletotrichum gloeosporioides and Colletotrichum scovillei on mangoes. EOs were extracted by hydro-distillation and analyzed by GC-MS and GC-FID. The antifungal activity of the EOs was determined by in vitro and in vivo assays. The Mat cultivar had the highest extraction yield of 3% FW, followed by Xoan (2.9%), Sanh (2.2%), and Navel (1%). The chemical composition of the EOs was similar, with limonene as the main compound (around 96%). The antifungal activity of EOs was not different, with a minimum fungicidal concentration of 16% for both fungi. The disease inhibition of EOs increased with their concentration. The highest inhibition of anthracnose caused by both fungi on mangoes was achieved at 16% EO. EOs had no adverse effect on mango quality (pH, total soluble solids, total acidity, color and brightness of mangoes), except firmness and weight loss at high concentrations (16%). Orange EOs can be used as bio-fungicides to control mango anthracnose at high concentrations.

3.
Membranes (Basel) ; 11(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34564536

RESUMO

Anthracnose disease caused by Colletotrichum spp. makes heavy losses for post-harvest mangoes of Cat Hoa Loc variety during storage, packaging, and transportation. The synthetic fungicides are commonly used to control the disease, but they are not safe for consumers' health and environment. This study was aimed to investigate the use of essential oils (EOs) as the safe alternative control. Pathogen was isolated from the infected Cat Hoa Loc mangoes and identified by morphology and DNA sequencing of the ITS region. Six EOs (cinnamon, basil, lemongrass, peppermint, coriander, and orange) were chemically analyzed by GC-MS. The antifungal activity of EOs was studied in vitro and in vivo. The results showed that the isolated pathogen was Colletotrichum acutatum. Cinnamon, basil, and lemongrass EOs effectively inhibited the growth of C. acutatum in descending order of cinnamon, basil, and lemongrass. However, they (except basil oil) severely damaged fruit peels. The antifungal activity was closely related to the main compounds of EOs. Basil EOs effectively controlled anthracnose development on Cat Hoa Loc mangoes artificially infected with C. acutatum, and its effectiveness was comparable to that of fungicide treatment. Consequently, basil EOs can be used as a biocide to control anthracnose on post-harvest Cat Hoa Loc mangoes.

4.
Antibiotics (Basel) ; 10(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062921

RESUMO

Bacterial leaf blight, which is caused by Xanthomonas axonopodis pv. allii, annually causes significant yield losses to Welsh onion in many producing countries, including Vietnam. In this study, we isolated and characterized lytic phages Φ16, Φ17A and Φ31, specific to X. axonopodis pv. allii and belonging to a new phage species and genus within the Autographiviridae, from four provinces in the Mekong Delta of Vietnam. Moreover, we evaluated their efficacy for the biocontrol of leaf blight in greenhouse and field conditions. When applying the three highly related phages individually or as a three-phage cocktail at 108 PFU/mL in greenhouse conditions, our results show that treatment with Φ31 alone provides higher disease prevention than the two other phages or the phage cocktail. Furthermore, we compared phage concentrations from 105 to 108 and showed optimal disease control at 107 and 108 PFU/mL. Finally, under field conditions, both phage Φ31 alone and the phage cocktail treatments suppressed disease symptoms, which was comparable to the chemical bactericide oxolinic acid (Starner). Phage treatment also significantly improved yield, showing the potential of phage as a biocontrol strategy for managing leaf blight in Welsh onion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA