Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rep ; 12(9): e16001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697943

RESUMO

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Assuntos
Ritmo beta , Doença de Parkinson , Núcleo Subtalâmico , Núcleo Subtalâmico/fisiopatologia , Doença de Parkinson/fisiopatologia , Humanos , Masculino , Ritmo beta/fisiologia , Pessoa de Meia-Idade , Feminino , Idoso , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodos
2.
Sci Rep ; 12(1): 18120, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302865

RESUMO

The expanding application of deep brain stimulation (DBS) therapy both drives and is informed by our growing understanding of disease pathophysiology and innovations in neurosurgical care. Neurophysiological targeting, a mainstay for identifying optimal, motor responsive targets, has remained largely unchanged for decades. Utilizing deep learning-based computer vision and related computational methods, we developed an effective and simple intraoperative approach to objectively correlate neural signals with movements, automating and standardizing the otherwise manual and subjective process of identifying ideal DBS electrode placements. Kinematics are extracted from video recordings of intraoperative motor testing using a trained deep neural network and compared to multi-unit activity recorded from the subthalamic nucleus. Neuro-motor correlations were quantified using dynamic time warping with the strength of a given comparison measured by comparing against a null distribution composed of related neuro-motor correlations. This objective measure was then compared to clinical determinations as recorded in surgical case notes. In seven DBS cases for treatment of Parkinson's disease, 100 distinct motor testing epochs were extracted for which clear clinical determinations were made. Neuro-motor correlations derived by our automated system compared favorably with expert clinical decision making in post-hoc comparisons, although follow-up studies are necessary to determine if improved correlation detection leads to improved outcomes. By improving the classification of neuro-motor relationships, the automated system we have developed will enable clinicians to maximize the therapeutic impact of DBS while also providing avenues for improving continued care of treated patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Vigília , Resultado do Tratamento , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/cirurgia , Doença de Parkinson/tratamento farmacológico
3.
J Neurophysiol ; 121(4): 1329-1341, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726164

RESUMO

What are the neural mechanisms of skill acquisition? Many studies find that long-term practice is associated with a functional reorganization of cortical neural activity. However, the link between these changes in neural activity and the behavioral improvements that occur is not well understood, especially for long-term learning that takes place over several weeks. To probe this link in detail, we leveraged a brain-computer interface (BCI) paradigm in which rhesus monkeys learned to master nonintuitive mappings between neural spiking in primary motor cortex and computer cursor movement. Critically, these BCI mappings were designed to disambiguate several different possible types of neural reorganization. We found that during the initial phase of learning, lasting minutes to hours, rapid changes in neural activity common to all neurons led to a fast suppression of motor error. In parallel, local changes to individual neurons gradually accrued over several weeks of training. This slower timescale cortical reorganization persisted long after the movement errors had decreased to asymptote and was associated with more efficient control of movement. We conclude that long-term practice evokes two distinct neural reorganization processes with vastly different timescales, leading to different aspects of improvement in motor behavior. NEW & NOTEWORTHY We leveraged a brain-computer interface learning paradigm to track the neural reorganization occurring throughout the full time course of motor skill learning lasting several weeks. We report on two distinct types of neural reorganization that mirror distinct phases of behavioral improvement: a fast phase, in which global reorganization of neural recruitment leads to a quick suppression of motor error, and a slow phase, in which local changes in individual tuning lead to improvements in movement efficiency.


Assuntos
Memória de Longo Prazo , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Interfaces Cérebro-Computador , Macaca mulatta , Masculino , Córtex Motor/citologia , Destreza Motora
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1572-1575, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268628

RESUMO

Previous studies of intracortical brain-computer interfaces (BCIs) have often focused on or compared the use of spiking activity and local field potentials (LFPs) for decoding kinematic movement parameters. Conversely, using these signals to detect the initial intention to use a neuroprosthetic device or not has remained a relatively understudied problem. In this study, we examined the relative performance of spiking activity and LFP signals in detecting discrete state changes in attention regarding a user's desire to actively control a BCI device. Preliminary offline results suggest that the beta and high gamma frequency bands of LFP activity demonstrated a capacity for discriminating idle/active BCI control states equal to or greater than firing rate activity on the same channel. Population classifier models using either signal modality demonstrated an indistinguishably high degree of accuracy in decoding rest periods from active BCI reach periods as well as other portions of active BCI task trials. These results suggest that either signal modality may be used to reliably detect discrete state changes on a fine time scale for the purpose of gating neural prosthetic movements.


Assuntos
Interfaces Cérebro-Computador , Fenômenos Biomecânicos , Eletroencefalografia , Humanos , Córtex Motor , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA