Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mutat ; 43(9): 1249-1258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451539

RESUMO

The large majority of germline alterations identified in the DNA mismatch repair (MMR) gene PMS2, a low-penetrance gene for the cancer predisposition Lynch syndrome, represent variants of uncertain significance (VUS). The inability to classify most VUS interferes with personalized healthcare. The complete in vitro MMR activity (CIMRA) assay, that only requires sequence information on the VUS, provides a functional analysis-based quantitative tool to improve the classification of VUS in MMR proteins. To derive a formula that translates CIMRA assay results into the odds of pathogenicity (OddsPath) for VUS in PMS2 we used a set of clinically classified PMS2 variants supplemented by inactivating variants that were generated by an in cellulo genetic screen, as proxies for cancer-predisposing variants. Validation of this OddsPath revealed high predictive values for benign and predisposing PMS2 VUS. We conclude that the OddsPath provides an integral metric that, following the other, higher penetrance, MMR proteins MSH2, MSH6 and MLH1 can be incorporated as strong evidence type into the upcoming criteria for MMR gene VUS classification of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP).


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Endonuclease PMS2 de Reparo de Erro de Pareamento , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética
2.
Front Genet ; 11: 798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849802

RESUMO

Functional assays that assess mRNA splicing can be used in interpretation of the clinical significance of sequence variants, including the Lynch syndrome-associated mismatch repair (MMR) genes. The purpose of this study was to investigate the contribution of splicing assay data to the classification of MMR gene sequence variants. We assayed mRNA splicing for 24 sequence variants in MLH1, MSH2, and MSH6, including 12 missense variants that were also assessed using a cell-free in vitro MMR activity (CIMRA) assay. Multifactorial likelihood analysis was conducted for each variant, combining CIMRA outputs and clinical data where available. We collated these results with existing public data to provide a dataset of splicing assay results for a total of 671 MMR gene sequence variants (328 missense/in-frame indel), and published and unpublished repair activity measurements for 154 of these variants. There were 241 variants for which a splicing aberration was detected: 92 complete impact, 33 incomplete impact, and 116 where it was not possible to determine complete versus incomplete splicing impact. Splicing results mostly aided in the interpretation of intronic (72%) and silent (92%) variants and were the least useful for missense substitutions/in-frame indels (10%). MMR protein functional activity assays were more useful in the analysis of these exonic variants but by design they were not able to detect clinically important splicing aberrations identified by parallel mRNA assays. The development of high throughput assays that can quantitatively assess impact on mRNA transcript expression and protein function in parallel will streamline classification of MMR gene sequence variants.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32615015

RESUMO

We describe a family severely affected by colorectal cancer (CRC) where whole-exome sequencing identified the coinheritance of the germline variants encoding MSH6 p.Thr1100Met and MUTYH p.Tyr179Cys in, at least, three CRC patients diagnosed before 60 years of age. Digenic inheritance of monoallelic MSH6 variants of uncertain significance and MUTYH variants has been suggested to predispose to Lynch syndrome-associated cancers; however, cosegregation with disease in the familial setting has not yet been established. The identification of individuals carrying multiple potential cancer risk variants is expected to rise with the increased application of whole-genome sequencing and large multigene panel testing in clinical genetic counseling of familial cancer patients. Here we demonstrate the coinheritance of monoallelic variants in MSH6 and MUTYH consistent with cosegregation with CRC, further supporting a role for digenic inheritance in cancer predisposition.

4.
Genet Med ; 22(5): 847-856, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965077

RESUMO

PURPOSE: Variants in the DNA mismatch repair (MMR) gene MSH6, identified in individuals suspected of Lynch syndrome, are difficult to classify owing to the low cancer penetrance of defects in that gene. This not only obfuscates personalized health care but also the development of a rapid and reliable classification procedure that does not require clinical data. METHODS: The complete in vitro MMR activity (CIMRA) assay was calibrated against clinically classified MSH6 variants and, employing Bayes' rule, integrated with computational predictions of pathogenicity. To enable the validation of this two-component classification procedure we have employed a genetic screen to generate a large set of inactivating Msh6 variants, as proxies for pathogenic variants. RESULTS: The genetic screen-derived variants established that the two-component classification procedure displays high sensitivities and specificities. Moreover, these inactivating variants enabled the direct reclassification of human variants of uncertain significance (VUS) as (likely) pathogenic. CONCLUSION: The two-component classification procedure and the genetic screens provide complementary approaches to rapidly and cost-effectively classify the large majority of human MSH6 variants. The approach followed here provides a template for the classification of variants in other disease-predisposing genes, facilitating the translation of personalized genomics into personalized health care.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Proteínas de Ligação a DNA/genética , Teorema de Bayes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Proteína 2 Homóloga a MutS/genética
5.
Genet Med ; 21(7): 1486-1496, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30504929

RESUMO

PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Hum Mutat ; 37(11): 1162-1179, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27435373

RESUMO

Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Análise Mutacional de DNA/métodos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Encefálicas/metabolismo , Estudos de Coortes , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Predisposição Genética para Doença , Variação Genética , Mutação em Linhagem Germinativa , Humanos , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Países Baixos
7.
Arthritis Rheum ; 64(6): 1859-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22231660

RESUMO

OBJECTIVE: Whether and how B lymphocytes contribute to the pathogenesis of spondylarthritis (SpA), a seronegative arthritis associated with gut inflammation, remains unknown. Because innate-like CD5+ B lymphocytes with regulatory functions have been identified in colitis models, we undertook the present study to analyze the presence and function of CD5+ B cells in human SpA. METHODS: Peripheral blood B cells from patients with SpA, patients with rheumatoid arthritis (RA), and healthy controls were analyzed by flow cytometry. Synovial biopsy samples were evaluated by immunohistochemistry analysis. Sorted CD5+ and CD5- B cells were analyzed for somatic hypermutation, expression of costimulatory molecules, and cytokine production. RESULTS: The naive, marginal zone-like, and to a lesser extent memory B cell compartments in patients with SpA exhibited a clear and specific increase of CD5+ B cells, which was not found in patients with RA. This increase was not due to either B cell activation or preferential migration of CD5- B cells to the inflamed synovium. Consistent with their phenotype and the low-affinity polyreactive immunoglobulins produced by their murine counterpart cells, CD5+ B cells from patients with SpA showed low levels of somatic hypermutation. With regard to antigen presentation, CD5+ B cells expressed slightly increased HLA-DR levels but low CD80 and CD86 levels. In vitro activation failed to up-regulate these costimulatory molecules but induced significant production of interleukin-10 and interleukin-6 by CD5+ B cells. CONCLUSION: CD5+ B cells are specifically increased in SpA. Analysis of somatic hypermutation, expression of antigen-presenting and costimulatory molecules, and cytokine production indicates that this B cell subset has regulatory capacities. Further investigation of the potential role of CD5+ cells in SpA is warranted.


Assuntos
Linfócitos B Reguladores/imunologia , Antígenos CD5/metabolismo , Espondilartrite/imunologia , Adulto , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Linfócitos B Reguladores/metabolismo , Feminino , Citometria de Fluxo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Espondilartrite/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA