Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 13(38): 4468-4477, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494619

RESUMO

hPG80 (human circulating progastrin) is produced and released by cancer cells. We recently reported that hPG80 is detected in the blood of patients with cancers from different origins, suggesting its potential utility for cancer detection. To accurately measure hPG80 in the blood of patients, we developed the DxPG80 test, a sandwich Enzyme-Linked Immunosorbent Assay (ELISA). This test quantifies hPG80 in EDTA plasma samples. The analytical performances of the DxPG80 test were evaluated using standard procedures and guidelines specific to ELISA technology. We showed high specificity for hPG80 with no cross-reactivity with human glycine-extended gastrin (hG17-Gly), human carboxy-amidated gastrin (hG17-NH2) or the CTFP (C-Terminus Flanking Peptide) and no interference with various endogenous or exogenous compounds. The test is linear between 0 and 50 pM hPG80 (native or recombinant). We demonstrated a trueness of measurement, an accuracy and a variability of hPG80 quantification with the DxPG80 test below the 20% relative errors as recommended in the guidelines. The limit of detection of hPG80 and the limit of quantification were calculated as 1 pM and 3.3 pM respectively. In conclusion, these results show the strong analytical performance of the DxPG80 test to measure hPG80 in blood samples.


Assuntos
Gastrinas , Neoplasias , Humanos , Precursores de Proteínas
2.
PLoS One ; 10(10): e0140900, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26502286

RESUMO

The Hepatitis C virus (HCV) infection exhibits a high global prevalence frequently associated with hepatocellular carcinoma, taking years to develop. Despite the standardization of highly sensitive HCV quantitative RT-PCR (qRT-PCR) detection methods, false-negative diagnoses may be generated with current methods, mainly due to the presence of PCR inhibitors and/or low viral loads in the patient's sample. These false-negative diagnoses impact both public health systems, in developing countries, and an in lesser extent, in developed countries, including both the risk of virus transmission during organ transplantation and/or blood transfusion and the quality of the antiviral treatment monitoring. To adopt an appropriate therapeutic strategy to improve the patient's prognosis, it is urgent to increase the HCV detection sensitivity. Based upon previous studies on HBV, we worked on the capacity of the scavenger acute phase protein, Apolipoprotein H (ApoH) to interact with HCV. Using different approaches, including immunoassays, antibody-inhibition, oxidation, ultracentrifugation, electron microscopy and RT-PCR analyses, we demonstrated specific interactions between HCV particles and ApoH. Moreover, when using a two-step HCV detection process, including capture of HCV by ApoH-coated nanomagnetic beads and a home-made real-time HCV-RT-PCR, we confirmed the presence of HCV for all samples from a clinical collection of HCV-seropositive patients exhibiting an RT-PCR COBAS® TaqMan® HCV Test, v2.0 (COBAS)-positive result. In contrast, for HCV-seropositive patients with either low HCV-load as determined with COBAS or exhibiting HCV-negative COBAS results, the addition of the two-step ApoH-HCV-capture and HCV-detection process was able to increase the sensitivity of HCV detection or more interestingly, detect in a genotype sequence-independent manner, a high-proportion (44%) of HCV/RNA-positive among the COBAS HCV-negative patients. Thus, the immune interaction between ApoH and HCV could be used as a sample preparation tool to enrich and/or cleanse HCV patient's samples to enhance the detection sensitivity of HCV and therefore significantly reduce the numbers of false-negative HCV diagnosis results.


Assuntos
Proteínas de Fase Aguda/metabolismo , Hepacivirus/metabolismo , Hepatite C/diagnóstico , beta 2-Glicoproteína I/metabolismo , Proteínas de Fase Aguda/imunologia , Centrifugação com Gradiente de Concentração/métodos , Reações Falso-Negativas , Hepacivirus/imunologia , Humanos , Técnicas Imunoenzimáticas/métodos , Microscopia Eletrônica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , beta 2-Glicoproteína I/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA