Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
iScience ; 27(10): 110971, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39398245

RESUMO

Autotaxin (ATX) is a lysophospholipase D that generates lysophosphatidic acid (LPA) and regulates cancer metastasis, therapeutic resistance, and tumor immunity. We found that myeloid cells in human melanoma biopsies abundantly express ATX and investigated its role in modulating innate tumor immunity using two models of melanoma metastasis-spontaneous and experimental. Targeted knockout of ATX in LysM+ myeloid cells in mice (LysM-KO) reduced both spontaneous and experimental B16-F10 melanoma metastases by ≥ 50%. Immunoprofiling revealed differences in M2-like alveolar macrophages, neutrophils and regulatory T cells in the metastatic lungs of LysM-WT versus LysM-KO that are model-dependent. These differences extend systemically, with LysM-KO mice bearing experimental metastasis having fewer neutrophils in the spleen than LysM-WT mice. Our results show that (1) LysM+ myeloid cells are an important source of ATX/LPA that promote melanoma metastasis by altering innate tumor immunity, and (2) intratumor and systemic immune profiles vary dynamically during disease progression and are model-dependent.

2.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339280

RESUMO

The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 µM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent.


Assuntos
Paclitaxel , Diester Fosfórico Hidrolases , Paclitaxel/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Humanos , Linhagem Celular Tumoral , Animais , Camundongos , Simulação por Computador , Simulação de Acoplamento Molecular , Sinergismo Farmacológico , Sobrevivência Celular/efeitos dos fármacos
3.
Acta Pharmacol Sin ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187677

RESUMO

While immune checkpoint inhibitors (ICIs) are promising in the treatment of metastatic melanoma, about half of patients do not respond well to them. Low levels of human leukocyte antigen-DR (HLA-DR) in tumors have been shown to negatively influence prognosis and response to ICIs. Lysophosphatidic acid (LPA) is produced in large amounts by melanoma and is abundantly present in the tumor microenvironment. LPA induces the release of various cytokines and chemokines from tumor cells, which affect cancer development, metastasis, and tumor immunity. In the present study, we investigated the role of LPA-induced IL-10 release in regulating HLA-DR expression and the underlying mechanisms in human melanoma cells. We showed that LPA (0.001-10 µM) dose-dependently increased DR6 transcript levels through activating LPAR1 in HEK293T cells. Knockdown of NF-κB1 abrogated the LPA-increased DR6 expression without affecting basal DR6 expression in both A2058 and A375 melanoma cell lines. LPA (10 µM) significantly increased IL-10 transcripts in A2058 and A375 melanoma cells, the effect was abolished by pharmacological inhibition of LPAR1 or knockdown of DR6. We found a statistically significant correlation between the expression of LPAR1, DR6 and IL-10 in human melanoma tissue and an association between increased expression of LPAR1 and reduced effectiveness of ICI therapy. We demonstrated that LPA (10 µM) markedly suppressed HLA-DR expression in both A375 and A2058 melanoma cells via activating the LPAR1-DR6-IL-10 pathway. These data suggest that the LPAR1-DR6-IL-10 autocrine loop could constitute a novel mechanism used by tumor cells to evade immunosurveillance by decreasing HLA-DR expression.

4.
Int J Stem Cells ; 17(3): 330-336, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38993099

RESUMO

Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

5.
J Cell Physiol ; 239(1): 112-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149778

RESUMO

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Assuntos
Lisofosfolipídeos , Osteogênese , Receptores de Lisofosfolipídeos , Perda de Dente , Animais , Camundongos , Diferenciação Celular/fisiologia , Lisofosfolipídeos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Lisofosfolipídeos/metabolismo
6.
J Dent Sci ; 18(3): 1219-1226, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404649

RESUMO

Background/purpose: Human dental pulp stem cells (hDPSCs) possess excellent proliferative and osteogenic differentiation potentials. This study aimed to elucidate the role of lysophosphatidic acid (LPA) signaling in the proliferation and osteogenic differentiation of hDPSCs. Materials and methods: hDPSCs were treated with LPA and proliferation was measured using the cell counting kit-8 assay. Following the osteogenic differentiation of hDPSCs using osteogenic medium in the presence or absence of LPA, alkaline phosphatase (ALP) staining, ALP activity measurements, and RT-qPCR were performed to analyze the osteoblast differentiation. Small interfering RNA (siRNA)-mediated LPAR3 silencing and extracellular signal-regulated (ERK)/mitogen-activated protein (MAP) kinase inhibitors were used to elucidate the molecular mechanisms underlying LPA-induced proliferation and differentiation of hDPSCs. Results: LPA treatment significantly induced proliferation and osteogenic differentiation of hDPSCs. The depletion of LPAR3 expression by LPAR3-speicifc siRNA in hDPSCs diminished LPA-induced proliferation and osteogenic differentiation. The LPAR3-mediated proliferation and osteogenic differentiation of hDPSCs in response to LPA were significantly suppressed by U0126, a selective inhibitor of ERK. Conclusion: These findings suggest that LPA induces the proliferation and osteogenic differentiation of hDPSCs via LPAR3-ERK-dependent pathways.

7.
Pharmacol Ther ; 245: 108414, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061203

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid mediator that regulates a variety of cellular functions such as cell proliferation, migration, survival, calcium mobilization, cytoskeletal rearrangements, and neurite retraction. The biological actions of LPA are mediated by at least six G protein-coupled receptors known as LPAR1-6. Given that LPAR1-3 were among the first LPARs identified, the majority of research efforts have focused on understanding their biology. This review provides an in-depth discussion of LPAR5, which has recently emerged as a key player in regulating normal intestinal homeostasis and modulating pathological conditions such as pain, itch, inflammatory diseases, and cancer. We also present a chronological overview of the efforts made to develop compounds that target LPAR5 for use as tool compounds to probe or validate LPAR5 biology and therapeutic agents for the treatment of inflammatory diseases and cancer.


Assuntos
Neoplasias , Receptores de Ácidos Lisofosfatídicos , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia , Lisofosfolipídeos/metabolismo , Proliferação de Células , Dor
8.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080255

RESUMO

The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Neoplasias , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
9.
Cancers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326737

RESUMO

Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent research, lung stromal cells such as bronchial epithelial cells and resident macrophages secrete autotaxin (ATX), an enzyme with lysophospholipase D activity that promotes cancer progression. In fact, several studies have shown that many cell types in the lung stroma could provide a rich source of ATX in diseases. In the present study, we sought to determine whether ATX derived from alveolar type II epithelial (ATII) pneumocytes could modulate the progression of lung metastasis, which has not been evaluated previously. To accomplish this, we used the B16-F10 syngeneic melanoma model, which readily metastasizes to the lungs when injected intravenously. Because B16-F10 cells express high levels of ATX, we used the CRISPR-Cas9 technology to knock out the ATX gene in B16-F10 cells, eliminating the contribution of tumor-derived ATX in lung metastasis. Next, we used the inducible Cre/loxP system (Sftpc-CreERT2/Enpp2fl/fl) to generate conditional knockout (KO) mice in which ATX is specifically deleted in ATII cells (i.e., Sftpc-KO). Injection of ATX-KO B16-F10 cells into Sftpc-KO or Sftpc-WT control littermates allowed us to investigate the specific contribution of ATII-derived ATX in lung metastasis. We found that targeted KO of ATX in ATII cells significantly reduced the metastatic burden of ATX-KO B16-F10 cells by 30% (unpaired t-test, p = 0.028) compared to Sftpc-WT control mice, suggesting that ATX derived from ATII cells could affect the metastatic progression. We detected upregulated levels of cytokines such as IFNγ (unpaired t-test, p < 0.0001) and TNFα (unpaired t-test, p = 0.0003), which could favor the increase in infiltrating CD8+ T cells observed in the tumor regions of Sftpc-KO mice. Taken together, our results highlight the contribution of host ATII cells as a stromal source of ATX in the progression of melanoma lung metastasis.

10.
J Am Assoc Lab Anim Sci ; 60(2): 160-167, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33629939

RESUMO

Recent studies have evaluated alternatives to the use of live animals in colony health monitoring. Currently, an alternative method that is suitable for all rack types and that has been verified to detect the infectious agents most commonly excluded from mouse colonies is unavailable. We compared the use of filter paper placed on the inside floor of mouse cages to the traditional use of sentinel mice in the detection of several prevalent murine pathogens including mouse hepatitis virus (MHV), murine norovirus (MNV), minute virus of mice (MVM), mouse parvovirus (MPV), Theiler murine encephalomyelitis virus (TMEV), Helicobacter spp., Syphacia obvelata, and Aspiculuris tetraptera. Experimental groups comprised 7 cages containing either 2 pieces of filter paper on the cage floor or 2 ICR sentinel mice. Soiled bedding from pet-store mice was transferred to the experimental cages weekly for 8 wk. At 1 and 2 mo after bedding transfer, the filter papers were evaluated by PCR and sentinel mice were tested by serology and fecal PCR. Filter papers detected all pathogens as effectively (MHV, MNV, MPV, MVM, TMEV S. obvelata, and A. tetraptera) or more effectively (Helicobacter spp.) than sentinel mice at both time points. Filter papers more readily detected pathogens with a high copy number per RT-PCR analysis than a low copy number. Helicobacter spp. were not detected by sentinel mice at either time point. These results indicate that the use of filter paper placed on the interior floor of empty mouse cages and exposed to soiled bedding is efficient in detecting bacteria, endoparasites, and most of the common mouse viruses included in an animal health monitoring program.


Assuntos
Abrigo para Animais , Papel , Infecções por Parvoviridae/veterinária , Doenças dos Roedores/transmissão , Vírus , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/transmissão , Infecções Bacterianas/veterinária , Camundongos , Camundongos Endogâmicos ICR , Infecções por Parvoviridae/transmissão , Doenças dos Roedores/microbiologia , Doenças dos Roedores/parasitologia , Doenças dos Roedores/prevenção & controle , Vigilância de Evento Sentinela , Viroses/prevenção & controle , Viroses/transmissão , Viroses/veterinária , Viroses/virologia
11.
Bioorg Chem ; 103: 104188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890995

RESUMO

The lysophospholipase D autotaxin (ATX) generates lysophosphatidic acid (LPA) that activates six cognate G-protein coupled receptors (GPCR) in cancerous cells, promoting their motility and invasion. Four novel compounds were generated aided by molecular docking guided design and synthesis techniques to obtain new dual inhibitors of ATX and the lysophosphatidic acid receptor subtype 1 (LPAR1). Biological evaluation of these compounds revealed two compounds, 10 and 11, as new ATX enzyme inhibitors with potencies in the range of 218-220 nM and water solubility (>100 µg/mL), but with no LPAR1 inhibitory activity. A QSAR model was generated that included four newly designed compounds and twenty-one additional compounds that we have reported previously. The QSAR model provided excellent predictability of the pharmacological activity and potency among structurally related drug candidates. This model will be highly useful in guiding the synthesis of new ATX inhibitors in the future.


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Piranos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/metabolismo , Ligação Proteica , Piranos/síntese química , Piranos/metabolismo , Relação Quantitativa Estrutura-Atividade , Ratos , Receptores de Ácidos Lisofosfatídicos/metabolismo
12.
Cells ; 9(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722120

RESUMO

Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator with diverse biological function mediated by S1P1-5 receptors. Whereas S1P was shown to protect the heart against ischemia/reperfusion (I/R) injury, other studies highlighted its vasoconstrictor effects. We aimed to separate the beneficial and potentially deleterious cardiac effects of S1P during I/R and identify the signaling pathways involved. Wild type (WT), S1P2-KO and S1P3-KO Langendorff-perfused murine hearts were exposed to intravascular S1P, I/R, or both. S1P induced a 45% decrease of coronary flow (CF) in WT-hearts. The presence of S1P-chaperon albumin did not modify this effect. CF reduction diminished in S1P3-KO but not in S1P2-KO hearts, indicating that in our model S1P3 mediates coronary vasoconstriction. In I/R experiments, S1P3 deficiency had no influence on postischemic CF but diminished functional recovery and increased infarct size, indicating a cardioprotective effect of S1P3. Preischemic S1P exposure resulted in a substantial reduction of postischemic CF and cardiac performance and increased the infarcted area. Although S1P3 deficiency increased postischemic CF, this failed to improve cardiac performance. These results indicate a dual role of S1P3 involving a direct protective action on the myocardium and a cardiosuppressive effect due to coronary vasoconstriction. In acute coronary syndrome when S1P may be released abundantly, intravascular and myocardial S1P production might have competing influences on myocardial function via activation of S1P3 receptors.


Assuntos
Isquemia Miocárdica/genética , Miócitos Cardíacos/metabolismo , Receptores de Esfingosina-1-Fosfato/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Isquemia Miocárdica/metabolismo , Transdução de Sinais
13.
Cancers (Basel) ; 12(5)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397679

RESUMO

The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.

14.
J Am Chem Soc ; 142(24): 10612-10616, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32469525

RESUMO

Lysophosphatidic acid (LPA) is a phospholipid that acts as an extracellular signaling molecule and activates the family of lysophosphatidic acid receptors (LPA1-6). These G protein-coupled receptors (GPCRs) are broadly expressed and are particularly important in development as well as in the nervous, cardiovascular, reproductive, gastrointestinal, and pulmonary systems. Here, we report on a photoswitchable analogue of LPA, termed AzoLPA, which contains an azobenzene photoswitch embedded in the acyl chain. AzoLPA enables optical control of LPA receptor activation, shown through its ability to rapidly control LPA-evoked increases in intracellular Ca2+ levels. AzoLPA shows greater activation of LPA receptors in its light-induced cis-form than its dark-adapted (or 460 nm light-induced) trans-form. AzoLPA enabled the optical control of neurite retraction through its activation of the LPA2 receptor.


Assuntos
Lisofosfolipídeos/metabolismo , Humanos , Lisofosfolipídeos/química , Processos Fotoquímicos , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais
15.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861195

RESUMO

Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P-S1P2-G12/13-ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.


Assuntos
Lisofosfolipídeos/farmacologia , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Sinergismo Farmacológico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/farmacologia , Piridinas/farmacologia , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores
16.
Nat Chem Biol ; 15(6): 623-631, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036923

RESUMO

Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P1-5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1-3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Lisofosfolipídeos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Imagem Óptica , Processos Fotoquímicos , Esfingosina/química , Esfingosina/metabolismo
17.
J Lipid Res ; 60(3): 464-474, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692142

RESUMO

The growth factor-like lipid mediator, lysophosphatidic acid (LPA), is a potent signaling molecule that influences numerous physiologic and pathologic processes. Manipulation of LPA signaling is of growing pharmacotherapeutic interest, especially because LPA resembles compounds with drug-like features. The action of LPA is mediated through activation of multiple types of molecular targets, including six G protein-coupled receptors that are clear targets for drug development. However, the LPA signaling has been linked to pathological responses that include promotion of fibrosis, atherogenesis, tumorigenesis, and metastasis. Thus, a question arises: Can we harness, in an LPA-like drug, the many beneficial activities of this lipid without eliciting its dreadful actions? We developed octadecyl thiophosphate (OTP; subsequently licensed as Rx100), an LPA mimic with higher stability in vivo than LPA. This article highlights progress made toward developing analogs like OTP and exploring prosurvival and regenerative LPA signaling. We determined that LPA prevents cell death triggered by various cellular stresses, including genotoxic stressors, and rescues cells condemned to apoptosis. LPA2 agonists provide a new treatment option for secretory diarrhea and reduce gastric erosion caused by nonsteroidal anti-inflammatory drugs. The potential uses of LPA2 agonists like OTP and sulfamoyl benzoic acid-based radioprotectins must be further explored for therapeutic uses.


Assuntos
Descoberta de Drogas/métodos , Receptores de Ácidos Lisofosfatídicos/agonistas , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Adv Biol Regul ; 71: 183-193, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243984

RESUMO

The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.


Assuntos
Transformação Celular Neoplásica/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/patologia
19.
Exp Biol Med (Maywood) ; 243(13): 1056-1065, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30253666

RESUMO

IMPACT STATEMENT: A critical barrier in treating diarrheal disease is easy-to-use effective treatments. Rx100 is a first in class, novel small molecule that has shown efficacy after both subcutaneous and oral administration in a mouse cholera-toxin- and Citrobacter rodentium infection-induced diarrhea models. Our findings indicate that Rx100 a metabolically stable analog of the lipid mediator lysophosphatidic acid blocks activation of CFTR-mediated secretion responsible for fluid discharge in secretory diarrhea. Rx100 represents a new treatment modality which does not directly block CFTR but attenuates its activation by bacterial toxins. Our results provide proof-of-principle that Rx100 can be developed for use as an effective oral or injectable easy-to-use drug for secretory diarrhea which could significantly improve care by eliminating the need for severely ill patients to regularly consume large quantities of oral rehydration therapies and offering options for pediatric patients.


Assuntos
Toxinas Bacterianas/toxicidade , Toxina da Cólera/toxicidade , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Lisofosfolipídeos/farmacologia , Animais , Diarreia/induzido quimicamente , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Camundongos
20.
Cancer Metastasis Rev ; 37(2-3): 509-518, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926310

RESUMO

Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Lisofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA