Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373001

RESUMO

New iron(II) complexes with 2,6-bis(1H-imidazol-2-yl)-4-methoxypyridine (L) of the composition [FeL2]An∙mH2O (A = SO42-, n = 1, m = 2 (I); A = ReO4-, n = 2, m = 1 (II); A = Br-, n = 2, m = 2 (III)) have been synthesized and investigated. To determine the coordination ability of the ligand, a single crystal of a copper(II) complex of the composition [CuLCl2] (IV) was obtained and studied by X-ray technique. Compounds I-III were studied using methods of X-ray phase analysis, electron (diffuse reflection spectra), infrared and Mössbauer spectroscopy, static magnetic susceptibility. The study of the µeff(T) dependence showed that the 1A1 ↔ 5T2 spin crossover manifests itself in the compounds. The spin crossover is accompanied by thermochromism: there is a distinct color change orange ↔ red-violet.


Assuntos
Ferro , Piridinas , Cobre/química , Compostos Ferrosos/química
2.
Dalton Trans ; 52(23): 8114-8134, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37248766

RESUMO

The rational design of ESIPT-capable metal complexes (ESIPT - Excited State Intramolecular Proton Transfer) requires two sites, namely, an ESIPT site and a metal binding site, to be spatially separated into the ligand core. Ligands featuring such sites are able to bind metal ions without being deprotonated upon their coordination. The use of ESIPT-capable ligands for the synthesis of metal complexes paves the way toward the exploration of ESIPT in the field of coordination chemistry. In this study, we present a new ESIPT-capable ligand on the base of 1-hydroxy-1H-imidazole, 1-hydroxy-5-methyl-4-[(2,2'-bipyridin)-6-yl]-2-(pyridin-2-yl)-1H-imidazole (HLb), and a series of ESIPT-capable zinc(II) halido complexes, [Zn(HLb)X2] (X = Cl, Br, I). Due to the incorporation of a (2,2'-bipyridin)-6-yl group at position 4 of the imidazole cycle, HLb acts as an N,N,N-chelating ligand. In the solid state, HLb and [Zn(HLb)X2] emit in the yellow region of the spectrum with excited state lifetimes in the nanosecond domain. Chelation-induced emission enhancement (CHEF) effect in zinc(II) complexes leads to an increase in the photoluminescence quantum yield (PLQY) for these compounds in comparison with free HLb ligand. The ESIPT process in HLb and [Zn(HLb)X2] is barrierless. The emission of [Zn(HLb)X2] is associated with the S1T → S0 transition in the tautomeric form (T-form). In contrast, due to (i) the dark nature of the S1 state and the bright nature of the S2 state and (ii) the large S1-S2 energy gap, HLb shows weak S2T → S0 fluorescence, in violation of Kasha's rule. Finally, the analysis of atomic charges in a series of ESIPT-capable 1-hydroxy-1H-imidazoles and their zinc(II) complexes allowed us to reveal the influence of expanding π-conjugation in the proton-donating and proton-accepting moieties on the stabilization/destabilization of the T-form and on the position of the emission band.

3.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838780

RESUMO

1H-Imidazole derivatives establish one of the iconic classes of ESIPT-capable compounds (ESIPT = excited state intramolecular proton transfer). This work presents the synthesis of 1-hydroxy-4-(2-hydroxyphenyl)-5-methyl-2-(pyridin-2-yl)-1H-imidazole (LOH,OH) as the first example of ESIPT-capable imidazole derivatives wherein the imidazole moiety simultaneously acts as a proton acceptor and a proton donor. The reaction of LOH,OH with chloroacetone leads to the selective reduction of the imidazolic OH group (whereas the phenolic OH group remains unaffected) and to the isolation of 4-(2-hydroxyphenyl)-5-methyl-2-(pyridin-2-yl)-1H-imidazole (LH,OH), a monohydroxy congener of LOH,OH. Both LOH,OH and LH,OH demonstrate luminescence in the solid state. The number of OH···N proton transfer sites in these compounds (one for LH,OH and two for LOH,OH) strongly affects the luminescence mechanism and color of the emission: LH,OH emits in the light green region, whereas LOH,OH luminesces in the orange region. According to joint experimental and theoretical studies, the main emission pathway of both compounds is associated with T1 → S0 phosphorescence and not related to ESIPT. At the same time, LOH,OH also exhibits S1 → S0 fluorescence associated with ESIPT with one proton transferred from the hydroxyimidazole moiety to the pyridine moiety, which is not possible for LH,OH due to the absence of the hydroxy group in the imidazole moiety.


Assuntos
Luminescência , Prótons , Modelos Moleculares , Imidazóis
4.
Dalton Trans ; 51(39): 15166-15188, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129344

RESUMO

The emission of ESIPT-fluorophores is known to be sensitive to various external and internal stimuli and can be fine-tuned through substitution in the proton-donating and proton-accepting groups. The incorporation of metal ions in the molecules of ESIPT fluorophores without their deprotonation is an emerging area of research in coordination chemistry which provides chemists with a new factor affecting the ESIPT reaction and ESIPT-coupled luminescence. In this paper we present 1-hydroxy-5-methyl-4-(pyridin-2-yl)-2-(quinolin-2-yl)-1H-imidazole (HLq) as a new ESIPT-capable ligand. Due to the spatial separation of metal binding and ESIPT sites this ligand can coordinate metal ions without being deprotonated. The reactions of ZnHal2 with HLq afford ESIPT-capable [Zn(HLq)Hal2] (Hal = Cl, Br, I) complexes. In the solid state HLq and [Zn(HLq)Hal2] luminesce in the orange region (λmax = 600-650 nm). The coordination of HLq by Zn2+ ions leads to the increase in the photoluminescence quantum yield due to the chelation-enhanced fluorescence effect. The ESIPT process is barrierless in the S1 state, leading to the only possible fluorescence channel in the tautomeric form (T), S1T → S0T. The emission of [Zn(HLq)Hal2] in the solid state is blue-shifted as compared with HLq due to the stabilization of the ground state and destabilization of the excited state. In CH2Cl2 solutions, the compounds demonstrate dual emission in the UV (λmax = 358 nm) and green (λmax = 530 nm) regions. This dual emission is associated with two radiative deactivation channels in the normal (N) and tautomeric (T) forms, S1N → S0N and S1T → S0T, originating from two minima on the excited state potential energy surfaces. High energy barriers for the GSIPT process allow the trapping of molecules in the minimum of the tautomeric form, S0T, resulting in the possibility of the S0T → S1T photoexcitation and extraordinarily small Stokes shifts in the solid state. Finally, the π-system of quinolin-2-yl group facilitates the delocalization of the positive charge in the proton-accepting part of the molecule and promotes the ESIPT reaction.

5.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014332

RESUMO

Novel iron(II) coordination compounds containing a ligand 2,6-bis(1H-imidazol-2-yl)pyridine (L), having such a composition as [FeL2]SO4·0.5H2O, [FeL2]Br2·H2O, [FeL2](ReO4)2, [FeL2]B10H10∙H2O, [FeL2]B12H12∙1.5H2O had been synthesized and studied using UV-Vis (diffuse reflectance), infrared, extended X-ray absorption fine structure (EXAFS), and Mössbauer spectroscopy methods, as well as X-ray diffraction and static magnetic susceptibility methods. The analysis of the µeff(T) dependence in the temperature range of 80-600 K have shown that all the obtained complexes exhibit a high-temperature spin crossover 1A1 ↔ 5T2.

6.
Dalton Trans ; 51(25): 9818-9835, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35708132

RESUMO

The ability of 1-hydroxy-1H-imidazoles to undergo proton transfer processes and to exist in N-hydroxy and N-oxide tautomeric forms can be used in coordination chemistry for the design of ESIPT-capable complexes. A series of ESIPT-capable zinc(II) complexes [Zn(HL)Hal2] (Hal = Cl, Br, I) with a rationally designed ESIPT-ligand 1-hydroxy-5-methyl-2,4-di(pyridin-2-yl)-1H-imidazole (HL) featuring spatially separated metal binding and ESIPT sites have been synthesized and characterized. Crystals of these compounds consist of a mixture of two isomers of [Zn(HL)Hal2]. Only a major isomer has a short intramolecular hydrogen bond O-H⋯N as a pre-requisite for ESIPT. In the solid state, the complexes [Zn(HL)Hal2] demonstrate temperature- and excitation wavelength dependent fluorescence in the cyan region due to the interplay of two intraligand fluorescence channels with excited state lifetimes spanning from 0.2 to 4.3 ns. The coordination of HL by Zn2+ ions results in an increase in the photoluminescence efficiency, and the photoluminescence quantum yields (PLQYs) of the complexes reach 12% at λex = 300 nm and 27% at λex = 400 nm in comparison with the PLQY of free HL of ca. 2%. Quantum chemical calculations indicate that N-hydroxy-N-oxide phototautomerization is both thermodynamically and kinetically favourable in the S1 state for [Zn(HL)Hal2]. The proton transfer induces considerable geometrical reorganizations and therefore results in large Stokes shifts of ca. 230 nm. In contrast, auxiliary ESIPT-incapable complexes [ZnL2][Zn(OAc)2]2·2H2O and [ZnL2][ZnCl2]2·4H2O with the deprotonated ligand exhibit excitation wavelength independent emission in the violet region with the Stokes shift reduced to ca. 130 nm.

7.
Chempluschem ; 86(10): 1436-1441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648233

RESUMO

The ability of 1-hydroxy-1H-imidazoles to exist in the form of two prototropic tautomers, the N-hydroxy and the N-oxide forms, can be utilized in the design of new types of ESIPT-fluorophores (ESIPT=excited state intramolecular proton transfer). Here we report the first example of 1-hydroxy-1H-imidazole-based ESIPT-fluorophores, 1-hydroxy-5-methyl-2,4-di(pyridin-2-yl)-1H-imidazole (HL), featuring a short intramolecular hydrogen bond O-H⋅⋅⋅N (O⋅⋅⋅N 2.56 Å) as a pre-requisite for ESIPT. The emission of HL originates from the anti-Kasha S2 →S0 fluorescence in the N-oxide form as a result of a large S2 -S1 energy gap slowing down the S2 →S1 internal conversion. Due to an energy barrier between the N-hydroxy and N-oxide forms in the ground state, the HL molecules can be trapped and photoexcited in the N-oxide form leading to the Stokes shift of ca. 60 nm which is the smallest among known ESIPT-fluorophores.

8.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065372

RESUMO

In recent decades, bicyclic nitroxyl radicals have caught chemists' attention as selective catalysts for the oxidation of alcohols and amines and as additives and mediators in directed C-H oxidative transformations. In this regard, the design and development of synthetic approaches to new functional bicyclic nitroxides is a relevant and important issue. It has been reported that imidazo[1,2-b]isoxazoles formed during the condensation of acetylacetone with 2-hydroxyaminooximes having a secondary hydroxyamino group are recyclized under mild basic catalyzed conditions to 8-hydroxy-5-methyl-3-oxo-6,8-diazabicyclo[3.2.1]-6-octenes. The latter, containing a sterically hindered cyclic N-hydroxy group, upon oxidation with lead dioxide in acetone, virtually quantitatively form stable nitroxyl bicyclic radicals of a new class, which are derivatives of both 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (TEMPON) and 3-imidazolines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA