RESUMO
Ocular ischemia/hypoxia is a severe problem in ophthalmology that can cause vision impairment and blindness. However, little is known about the changes occurring in the existing fully formed choroidal blood vessels. We developed a new whole organ culture model for ischemia/hypoxia in rat eyes and investigate the effects of pigment epithelium derived factor (PEDF) protein on the eye tissues. The concentration of oxygen within the vitreous was measured in the enucleated rat eyes and living rats. Then, ischemia was mimicked by incubating the freshly enucleated eyes in medium at 4°C for 14 h. Eyes were fixed immediately after enucleation or were intravitreally injected with PEDF protein or with vehicle before incubation. After incubation, light and electron microscopy (EM) as well as Tunel staining was performed. In the living rats, the intravitreal oxygen concentration was on average at 16.4% of the oxygen concentration in the air and did not change throughout the experiment whereas it was ca. 28% at the beginning of the experiment and gradually decreased over time in the enucleated eyes. EM analysis revealed that the shape of the choriocapillaris changed dramatically after 14 h incubation in the enucleated eyes. The endothelial cells made filopodia-like projections into the vessel lumen. They appeared identical to the labyrinth capillaries found in surgically extracted choroidal neovascular membranes from patients with wet age-related macular degeneration (AMD). These filopodia-like projections nearly closed the vessel lumen and showed open gaps between neighboring endothelial cells. PEDF significantly inhibited labyrinth capillary formation and kept the capillary lumen open. The number of TUNEL-positive ganglion cells and inner nuclear layer cells was significantly reduced in the PEDF-treated eyes compared to the vehicle-treated eyes. The structural changes in the chroidal vessels observed under ischemia/hypoxia conditions can mimic early changes in the process of pathological angiogenesis as observed in wet AMD patients. This new model can be used to investigate short-term drug effects on the choriocapillaris after ischemia/hypoxia and it highlighted the potential of PEDF as a promising candidate for treating wet AMD.
Assuntos
Neovascularização de Coroide , Serpinas , Animais , Células Endoteliais , Proteínas do Olho , Hipóxia , Isquemia , Neovascularização Patológica , Fatores de Crescimento Neural , Oxigênio , RatosRESUMO
BACKGROUND: Stargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities. METHODS: SD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions. RESULTS: Histological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions. DISCUSSION: The presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.
RESUMO
PURPOSE: This study proves the possibility of targeted use of the nonsteroidal anti-inflammatory drug lornoxicam to prevent the development of proliferative vitreoretinopathy (PVR). Triamcinolone acetonide (TA) was selected as a reference substance. METHODS: Wistar rats (N = 400) were used. PVR was modeled by intravitreal injection of dispase or concanavalin A. Lornoxicam or TA intravitreal administration was performed 20 min later. On the second and the third day, drugs were administrated systemic. Enucleation was performed on the first, third, seventh and 42nd or 56th day of the experiment. RESULTS: Pro-inflammatory substances led to the development of sub- and epiretinal membranes. Lornoxicam decreased the incidence of membrane formation by 43 and 31% in dispase and concanavalin models, respectively. Membranes, formed during its use, were smaller and contained less fibrotic components. At the end of the experiment, the thickness of retinal and choroidal layers among the animals which had received the therapy was the same as the thickness of the retina and choroid of intact rats. Lornoxicam administration normalized the cyclooxygenases (COXs) expression in the retina and the choroid at the early stages of the experiment. TA application was less effective in both models. CONCLUSIONS: COXs blocking during the development of PVR, overwhelming inflammation in the eye and reducing its consequences, is proved to be a much more effective and safe influence than the suppression of the entire cascade of arachidonic acid metabolism. Lornoxicam did not only improve the condition of the retina and the choroid but also significantly reduced the frequency of membrane formation.