Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Scand J Clin Lab Invest ; 77(8): 601-609, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972399

RESUMO

Genetic variants of angiopoietin-like protein 3 (ANGPTL3) are associated with serum triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) concentration in GWASs. ANGPTL3 deficiency causes declined TG, total cholesterol (TC), LDL-C, high-density lipoprotein cholesterol (HDL-C), apolipoprotein B (apoB) and apolipoprotein A-I (apoA-I) serum concentration, a phenotype defined as familial combined hypolipidaemia (FHBL2). Our aim is to establish whether ANGPTL3 serum protein concentration correlates with lipoproteins and lipids in hyper- or hypolipidaemic subjects, and whether ANGPTL3 sequence variants are associated with untypical lipid profiles. Additionally, 10 subjects with very low lipoprotein concentrations were sequenced for ANGPTL3 for possible loss-of-function (LOF) variants. Study subjects were selected from Finnish FINRISK and Health 2000 surveys. ANGPTL protein concentrations were measured by ELISA method. As a result, ANGPTL3 serum concentration correlated positively with age, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) activities, but not with any of the lipid or lifestyle attributes. No ANGPTL3 variants were found among sequenced samples. Subjects who carried ANGPTL3 sequence variants rs12563308 (n = 4) and rs199772471 (n = 1) had abnormally high TC and LDL-C concentrations. Whole exome sequencing data of these five subjects were further analyzed for rare and deleterious missense variants in genes associated with cholesterol metabolism. In conclusion, ANGPTL3 serum protein concentration did not predict lipid concentrations, unlike apolipoprotein C-III (apoC-III) which positively correlated with most of the lipid attributes. ANGPTL3 variant screen yielded five carriers with abnormally high TC concentration; the actual genetic causality, however, could not be verified.


Assuntos
Proteínas Semelhantes a Angiopoietina/sangue , Hipercolesterolemia/genética , Adulto , Idoso , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Análise Mutacional de DNA , Feminino , Finlândia , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipercolesterolemia/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Fatores de Risco
2.
J Lipid Res ; 57(6): 1097-107, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27040449

RESUMO

The consequences of angiopoietin-like protein 3 (ANGPTL3) deficiency on postprandial lipid and lipoprotein metabolism has not been investigated in humans. We studied 7 homozygous (undetectable circulating ANGPTL3 levels) and 31 heterozygous (50% of circulating ANGPTL3 levels) subjects with familial combined hypolipidemia (FHBL2) due to inactivating ANGPTL3 mutations in comparison with 35 controls. All subjects were evaluated at fasting and during 6 h after a high fat meal. Postprandial lipid and lipoprotein changes were quantified by calculating the areas under the curve (AUCs) using the 6 h concentration data. Plasma changes of ß-hydroxybutyric acid (ß-HBA) were measured as marker of hepatic oxidation of fatty acids. Compared with controls, homozygotes showed lower incremental AUCs (iAUCs) of total TG (-69%, P < 0.001), TG-rich lipoproteins (-90%, P < 0.001), apoB-48 (-78%, P = 0.032), and larger absolute increase of FFA (128%, P < 00.1). Also, heterozygotes displayed attenuated postprandial lipemia, but the difference was significant only for the iAUC of apoB-48 (-28%; P < 0.05). During the postprandial period, homozygotes, but not heterozygotes, showed a lower increase of ß-HBA. Our findings demonstrate that complete ANGPTL3 deficiency associates with highly reduced postprandial lipemia probably due to faster catabolism of intestinally derived lipoproteins, larger expansion of the postprandial FFA pool, and decreased influx of dietary-derived fatty acids into the liver. These results add information on mechanisms underlying hypolipidemia in FHBL2.


Assuntos
Angiopoietinas/genética , Ácidos Graxos não Esterificados/sangue , Hipobetalipoproteinemias/sangue , Lipídeos/sangue , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/sangue , Angiopoietinas/deficiência , Apolipoproteína B-48/sangue , Feminino , Heterozigoto , Homozigoto , Humanos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/patologia , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Período Pós-Prandial , Triglicerídeos/sangue
3.
Endocrine ; 52(2): 187-93, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26754661

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a secretory protein regulating plasma lipid levels via affecting lipoprotein lipase- and endothelial lipase-mediated hydrolysis of triglycerides and phospholipids. ANGPTL3-deficiency due to loss-of-function mutations in the ANGPTL3 gene causes familial combined hypobetalipoproteinemia (FHBL2, OMIM # 605019), a phenotype characterized by low concentration of all major lipoprotein classes in circulation. ANGPTL3 is therefore a potential therapeutic target to treat combined hyperlipidemia, a major risk factor for atherosclerotic coronary heart disease. This review focuses on the mechanisms behind ANGPTL3-deficiency induced FHBL2.


Assuntos
Angiopoietinas/fisiologia , Hipobetalipoproteinemias/genética , Metabolismo dos Lipídeos/genética , Lipoproteínas/metabolismo , Adulto , Idoso , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Feminino , Humanos , Hipobetalipoproteinemias/metabolismo , Masculino , Pessoa de Meia-Idade
4.
Sci Transl Med ; 8(323): 323ra13, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819196

RESUMO

USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fatores Estimuladores Upstream/deficiência , Fatores Estimuladores Upstream/genética , Adulto , Idoso , Alelos , Animais , Aterosclerose/metabolismo , Glicemia/metabolismo , Carboidratos/química , Sistema Cardiovascular , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Estudos de Coortes , Feminino , Inativação Gênica , Glucose/metabolismo , Humanos , Insulina/sangue , Insulina/metabolismo , Lipídeos/química , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Consumo de Oxigênio , Fenótipo , Polimorfismo de Nucleotídeo Único , Termogênese , Triglicerídeos/sangue , Triglicerídeos/metabolismo
5.
Biosci Rep ; 34(6): e00160, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25495645

RESUMO

Homozygosity of loss-of-function mutations in ANGPTL3 (angiopoietin-like protein 3)-gene results in FHBL2 (familial combined hypolipidaemia, OMIM #605019) characterized by the reduction of all major plasma lipoprotein classes, which includes VLDL (very-low-density lipoprotein), LDL (low-density lipoprotein), HDL (high-density lipoprotein) and low circulating NEFAs (non-esterified fatty acids), glucose and insulin levels. Thus complete lack of ANGPTL3 in humans not only affects lipid metabolism, but also affects whole-body insulin and glucose balance. We used wild-type and ANGPTL3-silenced IHHs (human immortalized hepatocytes) to investigate the effect of ANGPTL3 silencing on hepatocyte-specific VLDL secretion and glucose uptake. We demonstrate that both insulin and PPARγ (peroxisome-proliferator-activated receptor γ) agonist rosiglitazone down-regulate the secretion of ANGPTL3 and TAG (triacylglycerol)-enriched VLDL1-type particles in a dose-dependent manner. Silencing of ANGPTL3 improved glucose uptake in hepatocytes by 20-50% and influenced down-regulation of gluconeogenic genes, suggesting that silencing of ANGPTL3 improves insulin sensitivity. We further show that ANGPTL3-silenced cells display a more pronounced shift from the secretion of TAG-enriched VLDL1-type particles to secretion of lipid poor VLDL2-type particles during insulin stimulation. These data suggest liver-specific mechanisms involved in the reported insulin-sensitive phenotype of ANGPTL3-deficient humans, featuring lower plasma insulin and glucose levels.


Assuntos
Angiopoietina-1/genética , Gluconeogênese/genética , Hepatócitos/efeitos dos fármacos , Insulina/farmacologia , Lipoproteínas VLDL/metabolismo , Interferência de RNA , Triglicerídeos/metabolismo , Angiopoietina-1/metabolismo , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacocinética , Expressão Gênica , Glucose/metabolismo , Glucose/farmacocinética , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA