Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956326

RESUMO

Existing organoid models fall short of fully capturing the complexity of cancer because they lack sufficient multicellular diversity, tissue-level organization, biological durability and experimental flexibility. Thus, many multifactorial cancer processes, especially those involving the tumor microenvironment, are difficult to study ex vivo. To overcome these limitations, we herein implemented tissue-engineering and microfabrication technologies to develop topobiologically complex, patient-specific cancer avatars. Focusing on colorectal cancer, we generated miniature tissues consisting of long-lived gut-shaped human colon epithelia ('mini-colons') that stably integrate cancer cells and their native tumor microenvironment in a format optimized for real-time, high-resolution evaluation of cellular dynamics. We demonstrate the potential of this system through several applications: a comprehensive evaluation of drug effectivity, toxicity and resistance in anticancer therapies; the discovery of a mechanism triggered by cancer-associated fibroblasts that drives cancer invasion; and the identification of immunomodulatory interactions among different components of the tumor microenvironment. Similar approaches should be feasible for diverse tumor types.

2.
Nature ; 629(8011): 450-457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658753

RESUMO

Three-dimensional organoid culture technologies have revolutionized cancer research by allowing for more realistic and scalable reproductions of both tumour and microenvironmental structures1-3. This has enabled better modelling of low-complexity cancer cell behaviours that occur over relatively short periods of time4. However, available organoid systems do not capture the intricate evolutionary process of cancer development in terms of tissue architecture, cell diversity, homeostasis and lifespan. As a consequence, oncogenesis and tumour formation studies are not possible in vitro and instead require the extensive use of animal models, which provide limited spatiotemporal resolution of cellular dynamics and come at a considerable cost in terms of resources and animal lives. Here we developed topobiologically complex mini-colons that are able to undergo tumorigenesis ex vivo by integrating microfabrication, optogenetic and tissue engineering approaches. With this system, tumorigenic transformation can be spatiotemporally controlled by directing oncogenic activation through blue-light exposure, and emergent colon tumours can be tracked in real-time at the single-cell resolution for several weeks without breaking the culture. These induced mini-colons display rich intratumoural and intertumoural diversity and recapitulate key pathophysiological hallmarks displayed by colorectal tumours in vivo. By fine-tuning cell-intrinsic and cell-extrinsic parameters, mini-colons can be used to identify tumorigenic determinants and pharmacological opportunities. As a whole, our study paves the way for cancer initiation research outside living organisms.


Assuntos
Transformação Celular Neoplásica , Colo , Neoplasias Colorretais , Optogenética , Organoides , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/efeitos da radiação , Colo/patologia , Colo/efeitos da radiação , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Luz , Optogenética/métodos , Organoides/patologia , Organoides/efeitos da radiação , Análise de Célula Única , Fatores de Tempo , Engenharia Tecidual/métodos , Microambiente Tumoral , Avaliação Pré-Clínica de Medicamentos
3.
Sci Transl Med ; 12(552)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669424

RESUMO

Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.


Assuntos
Glioblastoma , Glioma , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioma/tratamento farmacológico , Glioma/radioterapia , Humanos , Macrófagos , Camundongos , Recidiva Local de Neoplasia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA