Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063683

RESUMO

A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis of both light transmission and SAW attenuation responses investigated in the nematic phase. While in the case of SiO2 nanoparticles as dopants, the liquid crystal composite showed an improvement in the memory effect, the addition of Fe3O4 magnetic nanoparticles resulted in the memory effect decreasing. Additional studies showed a significant shift in both the threshold voltage and nematic-isotropic transition temperature. Measurements in the magnetic field confirmed the increasing memory effect according to that of pure 5CB. The properties of these composites could lead to a potential application for the fabrication of memory devices suitable for information storage.

2.
J Acoust Soc Am ; 153(6): 3292, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306559

RESUMO

The effect of spherical magnetic nanoparticles with different size (5, 10, 15, and 20 nm) and volume concentration (10-3, 5 × 10-4, and 10-4) on liquid crystal 4-cyano-4'-hexylbiphenyl (6CB) behavior was investigated using surface acoustic wave (SAW). The attenuation response of SAW propagating along with the substrate/liquid crystal interface was used to study the structural changes induced by an applied magnetic field. The obtained results showed the shift of the threshold magnetic field with an increase in the volume concentration of nanoparticles toward lower fields and also the decrease in the isotropic-nematic phase transition temperature depending on the nanoparticle size and the nanoparticle volume fraction. Results confirmed again that the bulk viscosity coefficients should dominate the SAW attenuation and that the SAW investigation in the presented configuration is applicable to monitoring of the role of magnetic dopants in structural changes under external fields. Some theoretical background of the presented SAW investigation is introduced as well. Obtained results are discussed within the context of previous ones.

3.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222296

RESUMO

A low-frequency dielectric response of a ferrofluid based on transformer oil and MnZn ferrite nanoparticles is investigated in a gradient magnetic field. Four ferrofluid samples of various nanoparticle concentrations were introduced into planar micro-capacitors located over a magnetized tip. The dielectric spectra were measured in the frequency range from 0.1 Hz to 200 kHz and in the local magnetic field up to 100 mT. The spectra exhibit a dielectric relaxation ascribed to nanoparticle interfacial polarization. The low-frequency spectrum of each ferrofluid decreases upon application of the magnetic field up to 20 mT. The decrease in dielectric permittivity is caused by a magnetic force acting on larger nanoparticles in the gradient magnetic field. It is assumed that the interfaces of the concentrated nanoparticles in the gradient field do not contribute to the effective dielectric response. This reduces the effective relaxation time and shifts the relaxation toward higher frequencies. The dielectric spectra are well described by a relaxation fit function consisting of one Havriliak-Negami and a conductivity term. The fitting confirms that the only effect of the gradient magnetic field on the dielectric spectra is the shift of the dielectric relaxation and the decrease of the amplitude in the imaginary permittivity. This behavior is evident from a master plot, where all dielectric relaxations are superimposed on a single line. The knowledge of the presented behavior of the ferrofluid may be valuable when applying a ferrofluid to sharply magnetized parts of various electrical equipment (wires, tips, screws, nails, edges) as a liquid dielectric medium.

4.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080372

RESUMO

A number of materials are studied in the field of magnetic hyperthermia. In general, the most promising ones appear to be iron oxide particle nanosystems. This is also indicated in some clinical trial studies where iron-based oxides were used. On the other hand, the type of material itself provides a number of variations on how to tune hyperthermia indicators. In this paper, magnetite nanoparticles in various forms were analyzed. The nanoparticles differed in the core size as well as in the form of their arrangement. The arrangement was determined by the nature of the surfactant. The individual particles were covered chemically by dextran; in the case of chain-like particles, they were encapsulated naturally in a lipid bilayer. It was shown that in the case of chain-like nanoparticles, except for relaxation, a contribution from magnetic hysteresis to the heating process also appears. The influence of the chosen methodology of magnetic field generation was also analyzed. In addition, the influence of the chosen methodology of magnetic field generation was analyzed. The application of a rotating magnetic field was shown to be more efficient in generating heat than the application of an alternating magnetic field. However, the degree of efficiency depended on the arrangement of the magnetite nanoparticles. The difference in the efficiency of the rotating magnetic field versus the alternating magnetic field was much more pronounced for individual nanoparticles (in the form of a magnetic fluid) than for systems containing chain nanoparticles (magnetosomes and a mix of magnetic fluid with magnetosomes in a ratio 1:1).


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Magnetossomos , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Campos Magnéticos
5.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889684

RESUMO

The effect of magnetic nanoparticles size and concentration on nematic liquid crystal (NLC) behavior in a magnetic field was investigated. The magneto-optical investigation using measurements of the light transmission through the liquid crystal was used to study the structural changes induced by an applied weak magnetic field. Magnetic nanoparticles Fe3O4 of spherical shape with different size and volume concentration were added to NLC 4-cyano-40 -hexylbiphenyl (6CB) during its isotropic phase. In contrast to undoped liquid crystals, the distinctive different light transmission responses induced by a magnetic field in studied NLC samples were observed suggesting both structural changes and the orientational coupling between magnetic moments of nanoparticles and the director of the NLC. Experimental measurements were conducted, including investigation under linearly increasing and/or jumped magnetic field, respectively, as well as the investigation of time influence on structural changes to study their stability and switching time. The analysis of observed light transmission characteristics confirmed the role of concentration and size of magnetic nanoparticles on the resultant behavior of investigated NLC compounds. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles and on the important role of nanoparticles size on stability and switching properties. Obtained results are discussed within the context of previous ones.

6.
J Cereb Blood Flow Metab ; 42(2): 237-252, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34229512

RESUMO

The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.


Assuntos
Carbocianinas , Meios de Contraste , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Nanocápsulas , Imagem Óptica , Acidente Vascular Cerebral , Animais , Carbocianinas/química , Carbocianinas/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico
7.
Nanomaterials (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685084

RESUMO

The effect of the liquid crystalline host on structural changes in magnetosomes based on ferronematics is studied using the surface acoustic wave (SAW) technique supported by some capacitance and light transmission measurements. The measurement of the attenuation response of SAW propagating along the interface between LC and the piezoelectric substrate is used to study processes of structural changes under magnetic field. The magnetosome nanoparticles of the same volume concentration were added to three different nematic LCs, 5CB, 6CB, and E7. Unlike to undoped LCs, the different responses of SAW attenuation under the influence of magnetic and electric fields in LCs doped with magnetosomes were observed due to characteristic structural changes. The decrease of the threshold field for doped LCs as compared with pure LCs and slight effects on structural changes were registered. The threshold magnetic fields of LCs and composites were determined from capacitance measurements, and the slight shift to lower values was registered for doped LCs. The shift of nematic-isotropic transition was registered from dependencies of SAW attenuation on temperature. The acoustic anisotropy measurement approved the previous supposition about the role of bulk viscosity in used SAW measurements. In addition, capacitance and light transmition investigations supported SAW results and pointed out conclusions about their magnetic field behavior. Obtained results are discussed and confronted with previous ones and coincide well with those observed using acoustic, optical, or dielectric techniques.

8.
ACS Appl Mater Interfaces ; 13(20): 23627-23637, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988970

RESUMO

At present, both native and immobilized nanoparticles are of great importance in many areas of science and technology. In this paper, we have studied magnetic iron oxide nanoparticles and their aggregates bound on woven cotton textiles employing two simple modification procedures. One modification was based on the treatment of textiles with perchloric-acid-stabilized magnetic fluid diluted with methanol followed by drying. The second procedure was based on the microwave-assisted conversion of ferrous sulfate at high pH followed by drying. The structure and functional properties of these modified textiles were analyzed in detail. Scanning electron microscopy of native and modified textiles clearly showed the presence of iron oxide nanoparticles on the surface of the modified cotton fibers. All of the modified textile materials exhibited light to dark brown color depending on the amount of the bound iron oxide particles. Magnetic measurements showed that the saturation magnetization values reflect the amount of magnetic nanoparticles present in the modified textiles. Small-angle X-ray and neutron scattering measurements were conducted for the detailed structural characterization at the nanoscale of both the native and magnetically modified textiles, and different structural organization of nanoparticles in the two kinds of textile samples were concluded. The textile-bound iron oxide particles exhibited peroxidase-like activity when the N,N-diethyl-p-phenylenediamine sulfate salt was used as a substrate; this nanozyme activity enabled rapid decolorization of crystal violet in the presence of hydrogen peroxide. The deposition of a sufficient amount of iron oxide particles on textiles enabled their simple magnetic separation from large volumes of solutions; if necessary, the magnetic response of the modified textiles can be simply increased by incorporation of a piece of magnetic iron wire. The simplicity of the immobilized nanozyme preparation and the low cost of all the precursors enable its widespread application, such as decolorization and degradation of selected organic dyes and other important pollutants. Other types of textile-bound nanozymes can be prepared and used as low-cost catalysts for a variety of applications.


Assuntos
Fibra de Algodão , Nanopartículas de Magnetita/química , Nanocompostos/química , Peroxidases , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidases/química , Peroxidases/metabolismo
9.
ACS Appl Mater Interfaces ; 10(14): 11554-11564, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29560717

RESUMO

The efficiency of ultrasound hyperthermia for anti-cancer treatments such as radiotherapy or chemotherapy can be improved by using sonosensitizers, which are materials that enhance the attenuation and dissipation of acoustic energy. We propose the use of magnetic nanoparticles as sonosensitizers because of their biocompatibility, nontoxicity, and common use in several medical applications. A magnetic material was synthetized and then incorporated in the form of a magnetic fluid in agar tissue-mimicking phantoms. Ultrasound hyperthermia studies were conducted at various ultrasound frequencies and concentrations of magnetic nanoparticles in the phantoms. The theoretical modeling based on a heat transfer equation and the experimental results show good agreement and confirm that the temperature rise during ultrasound heating in tissue-mimicking phantoms doped with sonosensitizers is greater than that in a pure agar phantom. Furthermore, on the basis of Pennes' bio-heat equation, which takes into consideration the blood perfusion and metabolic heat, the thermal dose and lesion shapes after sonication were determined for a hypothetical tissue.


Assuntos
Nanopartículas de Magnetita , Calefação , Hipertermia Induzida , Magnetismo , Imagens de Fantasmas , Terapia por Ultrassom
10.
Soft Matter ; 14(9): 1647-1658, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29435541

RESUMO

The influence of magnetic field on the isotropic-to-nematic phase transition temperature is investigated in neat bent-core and calamitic liquid crystals, in their mixture, and in samples doped with spherical magnetic nanoparticles for two different orientations of the magnetic field. A magnetic-field-induced negative or positive shift of the transition temperature was detected depending on the magnetic field orientation with respect to the initial orientation of the nematic phase, and on the type of liquid crystal matrix.

11.
J Chem Phys ; 146(1): 014704, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-28063423

RESUMO

In the present paper, we provide low-frequency dielectric spectra for a thin layer of a nanofluid based on transformer oil and iron oxide nanoparticles stabilized by oleic acid. The complex dielectric permittivity measured in the frequency range from 1 mHz to 200 kHz shows an obvious electrode polarization effect and a Debye-like dielectric relaxation process. Both effects stem from the presence of space charge in the oil due to impurity ions, and in the nanofluid represented predominantly by a residual surfactant and uncompensated particle surface charge. It is shown that the spectra, which were measured in the temperature range from 298 K to 358 K, can be well represented by a fitting function consisted of one Havriliak-Negami term and the Jonscher's power law. In the investigated magnetic nanofluid layer, we found that the onset of the electrode polarization is suppressed to lower frequencies by the application of an external magnetic field (300 mT). This phenomenon is explained by a slowed-down migration of the space charge due to the Lorentz force and by a hindering effect of the formed magnetic nanoparticle aggregates. Surprisingly, a moderate decrease in the whole permittivity spectrum was observed for both parallel and perpendicular orientations of the electric and magnetic fields. This is in contradiction with the usual magnetodielectric anisotropy effect. Based on our qualitative analysis, we discuss potential reasons accountable for the observed effect.

12.
Colloids Surf B Biointerfaces ; 146: 794-800, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451367

RESUMO

An adsorption of magnetic nanoparticles (MNP) from electrostatically stabilized aqueous ferrofluids on amyloid fibrils of hen egg white lysozyme (HEWL) in 2mg/mL acidic dispersions have been detected for the MNP concentration range of 0.01-0.1vol.%. The association of the MNP with amyloid fibrils has been characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and magneto-optical measurements. It has been observed that the extent of adsorption is determined by the MNP concentration. When increasing the MNP concentration the formed aggregates of magnetic particles repeat the general rod-like structure of the fibrils. The effect is not observed when MNP are mixed with the solution of lysozyme monomers. The adsorption has been investigated with the aim to clarify previously found disaggregation activity of MNP in amyloid fibrils dispersions and to get deeper insight into interaction processes between amyloids and MNP. The observed effect is also discussed with respect to potential applications for ordering lysozyme amyloid fibrils in a liquid crystal phase under external magnetic fields.


Assuntos
Amiloide/química , Nanopartículas de Magnetita/química , Muramidase/química , Adsorção , Amiloide/metabolismo , Animais , Galinhas , Feminino , Microscopia Eletrônica de Transmissão , Muramidase/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
13.
Artigo em Inglês | MEDLINE | ID: mdl-25314449

RESUMO

An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.


Assuntos
Espectroscopia Dielétrica , Eletricidade , Imãs/química , Nanopartículas/química , Eletrodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-23410474

RESUMO

The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH), and SWCNT functionalized with Fe(3)O(4) nanoparticles in a nematic liquid crystal has been studied experimentally. The volume concentration of nanoparticles was φ(1)=10(-4) and φ(2)=10(-3). Independent of the type and the volume concentration of the nanoparticles, a linear response to low magnetic fields (far below the magnetic Fréederiksz transition threshold) has been observed, which is not present in the undoped nematic.


Assuntos
Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Campos Magnéticos , Modelos Químicos , Simulação por Computador , Capacitância Elétrica , Doses de Radiação
15.
Scanning ; 34(3): 159-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21953296

RESUMO

In this study, we deposited isolated magnetosomes from magnetotactic bacteria Magnetospirillum strain AMB-1 onto solid surfaces using spin coating (SC) and drop coating (DC) techniques. Four imaging techniques have been used to visualize the sample structure: scanning and transmission electron microscopy (SEM, TEM), atomic and magnetic force microscopy (AFM, MFM). Additionally, dynamic light scattering was applied to measure the hydrodynamic radius of agglomerated/aggregated magnetosomes in a liquid environment. This manuscript discusses observed differences between structures obtained by two deposition techniques, i.e. possible interactions and factors responsible for magnetosomes' formation, their morphology on surfaces as a result of agglomeration and aggregation phenomena. Moreover, topography and homogeneity of obtained structures as well as thickness of protein-based membrane were also examined and described. Using high-resolution TEM, we analyzed the size of magnetic cores, their crystal structure and quality. We found that the SC technique provides a homogenous layer of magnetosomes and hydrophilization of silicon surfaces improves the deposition of magnetosomes. However, due to strong hydrogen interaction to the hydrophilic silicone surface, the organic membrane of magnetosomes is mostly flattened. As a matter of fact, the size distributions of magnetosomes deposited by SC and DC techniques (logarithmic-normal tendency) differ from the Feret diameter distribution (normal). Furthermore, our study confirms the good crystalline quality of magnetosomes' cores. It also shows that they are magnetic in the all their volume.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/ultraestrutura , Magnetospirillum/química , Tamanho da Partícula , HEPES/química , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Magnetismo , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Silicones/química , Soluções/química , Propriedades de Superfície
16.
Nanotechnology ; 21(6): 065103, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20061598

RESUMO

Peptide amyloid aggregation is a hallmark of several human pathologies termed amyloid diseases. We have investigated the effect of electrostatically stabilized magnetic nanoparticles of Fe(3)O(4) on the amyloid aggregation of lysozyme, as a prototypical amyloidogenic protein. Thioflavin T fluorescence assay and atomic force microscopy were used for monitoring the inhibiting and disassembly activity of magnetic nanoparticles of Fe(3)O(4). We have found that magnetic Fe(3)O(4) nanoparticles are able to interact with lysozyme amyloids in vitro leading to a reduction of the amyloid aggregates, thus promoting depolymerization; the studied nanoparticles also inhibit lysozyme amyloid aggregation. The ability to inhibit lysozyme amyloid formation and promote lysozyme amyloid disassembly exhibit concentration-dependent characteristics with IC50 = 0.65 mg ml(-1) and DC50 = 0.16 mg ml(-1) indicating that nanoparticles interfere with lysozyme aggregation already at stoichiometric concentrations. These features make Fe(3)O(4) nanoparticles of potential interest as therapeutic agents against amyloid diseases and their non-risk exploitation in nanomedicine and nanodiagnostics.


Assuntos
Óxido Ferroso-Férrico/farmacologia , Muramidase/química , Nanopartículas/química , Amiloidose/tratamento farmacológico , Animais , Galinhas , Óxido Ferroso-Férrico/química , Humanos , Magnetismo , Conformação Proteica , Dobramento de Proteína , Solubilidade
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011702, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18763968

RESUMO

In this work the 4-(trans- 4'-n -hexylcyclohexyl)-isothiocyanatobenzene (6CHBT) liquid crystal was doped with differently shaped magnetite nanoparticles. The structural changes were observed by capacitance measurements and showed significant influence of the shape and size of the magnetic particles on the magnetic Fréedericksz transition. For the volume concentration phi= 2 x 10(-4) of the magnetic particles, the critical magnetic field was established for the pure liquid crystal, and for liquid crystals doped with spherical, chainlike, and rodlike magnetic particles. The influence of the magnetic field depends on the type of anchoring, which is characterized by the density of anchoring energy and by the initial orientation between the liquid crystal molecules and the magnetic moment of the magnetic particles. The experimental results indicated soft anchoring in the case of spherical magnetic particles and rigid anchoring in the case of rodlike and chainlike magnetic particles, with parallel initial orientation between the magnetic moments of the magnetic particles and director.

18.
J Phys Condens Matter ; 20(20): 200301, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21694229

RESUMO

The 11th International Conference on Magnetic Fluids (ICMF 11) was held in Kosice, Slovakia between 23-27 July 2007. Attendance at the conference was high and its motivation was in line with the ten previous ICMF conferences organized in Udine, Orlando, Bangor, Sendai-Tokyo, Riga, Paris, Bhavnagar, Timisoara, Bremen and Guarujá. The conference in Slovakia reflected the scientific community's enthusiasm and worldwide support, with 256 participants, from 30 countries attending.The main objective of ICMF 11 was to promote progress and knowledge in the field of magnetic fluids regarding their chemistry, physical and magnetic properties, heat and mass transfer, surface phenomena, as well as their technological and biomedical applications. As research on magnetic fluids is essentially interdisciplinary, experts from related areas were invited to present their contributions with a view to increasing knowledge in the field and highlighting new trends. Submitted communications were refereed by members of the Scientific Organizing Committee and abstracts were assembled in a book of abstracts. Participants presented 180 posters in two poster sessions and 56 oral presentations. All presentations contributed to a greater understanding of the area, and helped to bridge the gap between physics, chemistry, technology, biology and medical sciences. Contributions to this conference are presented in 115 scientific papers, with some published in Journal of Physics: Condensed Matter and the rest in Magnetohydrodynamics. The organization of the conference was made possible by generous support from the Institute of Experimental Physics and Institute of Geotechnics of the Slovak Academy of Sciences, the University of Pavol Jozef Safárik and the Slovak Physical Society. Financial support from Ferrotec, Cryosoft Ltd, Mikrochem, Liquids Research Ltd, Askony and US Steel Kosice, is also gratefully acknowledged.

19.
Neuro Endocrinol Lett ; 27 Suppl 2: 96-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17159789

RESUMO

OBJECTIVES: The acute toxicity of magnetic nanoparticles was effectively lowered by their encapsulation with poly(D,L lactide). In relation to the idea to use magnetic nanoparticles in development of new delivery systems suitable for targeted drug administration, the toxicological profile of five types of magnetic fluids was assessed in mice. METHODS: The nanoprecipitation method was used to prepare magnetic fluids containing nanoparticles of Fe(3)O(4) encapsulated with biodegradable substances. The acute toxicity testing was performed according to OECD Test Guideline 425. In the pilot distribution study a special staining method was examined for the detection of Fe ions in body tissues of mice after intravenous administration of magnetic fluids. RESULTS: The p.o. LD(50) values were greater than 2,000.0 mg/kg of body weight and i.v. LD(50) values were in the range of 231.7-558.9 mg/kg of body weight. CONCLUSIONS: Of the magnetic nanoparticles tested, those encapsulated with poly(D,L lactide) were the most prospective for further in vivo testing.


Assuntos
Nanopartículas Metálicas/toxicidade , Animais , Composição de Medicamentos , Feminino , Magnetismo , Nanopartículas Metálicas/análise , Camundongos , Camundongos Endogâmicos ICR , Poliésteres/química , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA