Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741267

RESUMO

The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.


Assuntos
Multilinguismo , Lobo Parietal , Fala , Lobo Temporal , Estimulação Magnética Transcraniana , Humanos , Masculino , Lobo Temporal/fisiologia , Feminino , Adulto Jovem , Adulto , Lobo Parietal/fisiologia , Fala/fisiologia , Sinais (Psicologia)
2.
Ann N Y Acad Sci ; 1534(1): 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419368

RESUMO

Can lifelong bilingualism be robustly decoded from intrinsic brain connectivity? Can we determine, using a spectrally resolved approach, the oscillatory networks that better predict dual-language experience? We recorded resting-state magnetoencephalographic activity in highly proficient Spanish-Basque bilinguals and Spanish monolinguals, calculated functional connectivity at canonical frequency bands, and derived topological network properties using graph analysis. These features were fed into a machine learning classifier to establish how robustly they discriminated between the groups. The model showed excellent classification (AUC: 0.91 ± 0.12) between individuals in each group. The key drivers of classification were network strength in beta (15-30 Hz) and delta (2-4 Hz) rhythms. Further characterization of these networks revealed the involvement of temporal, cingulate, and fronto-parietal hubs likely underpinning the language and default-mode networks (DMNs). Complementary evidence from a correlation analysis showed that the top-ranked features that better discriminated individuals during rest also explained interindividual variability in second language (L2) proficiency within bilinguals, further supporting the robustness of the machine learning model in capturing trait-like markers of bilingualism. Overall, our results show that long-term experience with an L2 can be "brain-read" at a fine-grained level from resting-state oscillatory network organization, highlighting its pervasive impact, particularly within language and DMN networks.


Assuntos
Multilinguismo , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Encéfalo , Idioma
3.
Sci Rep ; 13(1): 7725, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173436

RESUMO

Bilinguals with a high proficiency in their first (L1) and second language (L2) often show comparable reaction times when switching from their L1 to L2 and vice-versa ("symmetrical switch costs"). However, the neurophysiological signatures supporting this effect are not well understood. Here, we ran two separate experiments and assessed behavioral and MEG responses in highly proficient Spanish-Basque bilinguals while they overtly name pictures in a mixed-language context. In the behavioral experiment, bilinguals were slower when naming items in switch relative to non-switch trials, and this switch cost was comparable for both languages (symmetrical). The MEG experiment mimicked the behavioral one, with switch trials showing more desynchronization than non-switch trials across languages (symmetric neural cost) in the alpha band (8-13 Hz). Source-localization revealed the engagement of right parietal and premotor areas, which have been linked to language selection and inhibitory control; and of the left anterior temporal lobe (ATL), a cross-linguistic region housing conceptual knowledge that generalizes across languages. Our results suggest that highly proficient bilinguals implement a language-independent mechanism, supported by alpha oscillations, which is involved in cue-based language selection and facilitates conceptually-driven lexical access in the ATL, possibly by inhibiting non-target lexical items or disinhibiting target ones.


Assuntos
Multilinguismo , Idioma , Tempo de Reação/fisiologia , Linguística
5.
Neuropsychologia ; 181: 108494, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36708918

RESUMO

Previous evidence suggests that distinct ventral and dorsal streams respectively underpin the semantic processing of object and action knowledge. Recently, we found that brain tumor patients with dorsal gliomas in frontoparietal hubs show a selective longitudinal compensation (post-vs. pre-surgery) during the retrieval of lexico-semantic information about actions (but not objects), indexed by power increases in beta rhythms (13-28 Hz). Here, we move one-step further and ask whether a similar organizational principle also stands across the different languages a bilingual speaks. To test this hypothesis, we combined a picture-naming task with MEG recordings and evaluated highly proficient Spanish-Basque bilinguals undergoing surgery for tumor resection in left frontoparietal regions. We assessed patients before and three months after surgery. At the behavioral level, we observed a similar performance across sessions irrespectively of the language at use, suggesting overall successful function preservation. At the oscillatory level, we found longitudinal selective power increases in beta for action naming in Spanish and Basque. Nevertheless, tumor resection triggered a differential reorganization of the L1 and the L2, with the latter one additionally recruiting the right hemisphere. Overall, our results provide evidence for (i) the specific involvement of frontoparietal regions in the semantic retrieval/representation of action knowledge across languages; (ii) a key role of beta oscillations as a signature of language compensation and (iii) the existence of divergent plasticity trajectories in L1 and L2 after surgery. By doing so, they provide new insights into the spectro-temporal dynamics supporting postoperative recovery in the bilingual brain.


Assuntos
Neoplasias Encefálicas , Multilinguismo , Humanos , Idioma , Encéfalo/cirurgia , Semântica , Neoplasias Encefálicas/cirurgia
6.
Sci Rep ; 12(1): 764, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031665

RESUMO

Words representing objects (nouns) and words representing actions (verbs) are essential components of speech across languages. While there is evidence regarding the organizational principles governing neural representation of nouns and verbs in monolingual speakers, little is known about how this knowledge is represented in the bilingual brain. To address this gap, we recorded neuromagnetic signals while highly proficient Spanish-Basque bilinguals performed a picture-naming task and tracked the brain oscillatory dynamics underlying this process. We found theta (4-8 Hz) power increases and alpha-beta (8-25 Hz) power decreases irrespectively of the category and language at use in a time window classically associated to the controlled retrieval of lexico-semantic information. When comparing nouns and verbs within each language, we found theta power increases for verbs as compared to nouns in bilateral visual cortices and cognitive control areas including the left SMA and right middle temporal gyrus. In addition, stronger alpha-beta power decreases were observed for nouns as compared to verbs in visual cortices and semantic-related regions such as the left anterior temporal lobe and right premotor cortex. No differences were observed between categories across languages. Overall, our results suggest that noun and verb processing recruit partially different networks during speech production but that these category-based representations are similarly processed in the bilingual brain.

7.
Hum Brain Mapp ; 42(6): 1777-1793, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368838

RESUMO

Recent evidence suggests that damage to the language network triggers its functional reorganization. Yet, the spectro-temporal fingerprints of this plastic rearrangement and its relation to anatomical changes is less well understood. Here, we combined magnetoencephalographic recordings with a proxy measure of white matter to investigate oscillatory activity supporting language plasticity and its relation to structural reshaping. First, cortical dynamics were acquired in a group of healthy controls during object and action naming. Results showed segregated beta (13-28 Hz) power decreases in left ventral and dorsal pathways, in a time-window associated to lexico-semantic processing (~250-500 ms). Six patients with left tumors invading either ventral or dorsal regions performed the same naming task before and 3 months after surgery for tumor resection. When longitudinally comparing patients' responses we found beta compensation mimicking the category-based segregation showed by controls, with ventral and dorsal damage leading to selective compensation for object and action naming, respectively. At the structural level, all patients showed preoperative changes in white matter tracts possibly linked to plasticity triggered by tumor growth. Furthermore, in some patients, structural changes were also evident after surgery and showed associations with longitudinal changes in beta power lateralization toward the contralesional hemisphere. Overall, our findings support the existence of anatomo-functional dependencies in language reorganization and highlight the potential role of oscillatory markers in tracking longitudinal plasticity in brain tumor patients. By doing so, they provide valuable information for mapping preoperative and postoperative neural reshaping and plan surgical strategies to preserve language function and patient's quality of life.


Assuntos
Ritmo beta/fisiologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Plasticidade Neuronal/fisiologia , Psicolinguística , Substância Branca/patologia , Adulto , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Behav Res Methods ; 53(2): 918-927, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901346

RESUMO

Picture naming tasks are currently the gold standard for identifying and preserving language-related areas during awake brain surgery. With multilingual populations increasing worldwide, patients frequently need to be tested in more than one language. There is still no reliable testing instrument, as the available batteries have been developed for specific languages. Heterogeneity in the selection criteria for stimuli leads to differences, for example, in the size, color, image quality, and even names associated with pictures, making direct cross-linguistic comparisons difficult. Here we present MULTIMAP, a new multilingual picture naming test for mapping eloquent areas during awake brain surgery. Recognizing that the distinction between nouns and verbs is necessary for detailed and precise language mapping, MULTIMAP consists of a database of 218 standardized color pictures representing both objects and actions. These images have been tested for name agreement with speakers of Spanish, Basque, Catalan, Italian, French, English, German, Mandarin Chinese, and Arabic, and have been controlled for relevant linguistic features in cross-language combinations. The MULTIMAP test for objects and verbs represents an alternative to the Oral Denomination 80 (DO 80) monolingual pictorial set currently used in language mapping, providing an open-source, standardized set of up-to-date pictures, where relevant linguistic variables across several languages have been taken into account in picture creation and selection.


Assuntos
Multilinguismo , Nomes , Mapeamento Encefálico , Humanos , Itália , Idioma , Vigília
9.
Biomolecules ; 10(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722349

RESUMO

Pathological homocysteine (HCY) accumulation in the human plasma, known as hyperhomocysteinemia, exacerbates neurodegenerative diseases because, in the brain, this amino acid acts as a persistent N-methyl-d-aspartate receptor agonist. We studied the effects of 0.1-1 nM ouabain on intracellular Ca2+ signaling, mitochondrial inner membrane voltage (φmit), and cell viability in primary cultures of rat cortical neurons in glutamate and HCY neurotoxic insults. In addition, apoptosis-related protein expression and the involvement of some kinases in ouabain-mediated effects were evaluated. In short insults, HCY was less potent than glutamate as a neurotoxic agent and induced a 20% loss of φmit, whereas glutamate caused a 70% decrease of this value. Subnanomolar ouabain exhibited immediate and postponed neuroprotective effects on neurons. (1) Ouabain rapidly reduced the Ca2+ overload of neurons and loss of φmit evoked by glutamate and HCY that rescued neurons in short insults. (2) In prolonged 24 h excitotoxic insults, ouabain prevented neuronal apoptosis, triggering proteinkinase A and proteinkinase C dependent intracellular neuroprotective cascades for HCY, but not for glutamate. We, therefore, demonstrated here the role of PKC and PKA involving pathways in neuronal survival caused by ouabain in hyperhomocysteinemia, which suggests existence of different appropriate pharmacological treatment for hyperhomocysteinemia and glutamate excitotoxicity.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Ouabaína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Glutâmico/farmacologia , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Transporte de Íons/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteína Quinase C/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA