Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biosyst ; 12(11): 3435-3446, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27722620

RESUMO

α-Anomers of 2'-deoxyadenosine (αdA) are major products of deoxyadenosine damage when DNA is γ-irradiated under anoxic conditions. Such lesions are a threat to genomic stability and are known to be processed by human apurinic/apyrimidinic endonuclease 1 (APE1). The aim of this study was to determine whether the α-anomeric structure enhances enzyme recognition. For this purpose, we analyzed the kinetic mechanism of αdA conversion by APE1 using a stopped-flow fluorescence technique. Our data reveals that the initial formation of the complex of APE1 with an αdA-containing substrate is followed by at least three conformational transitions in this complex that correspond to the induced fit leading to the formation of a catalytically competent complex. A local perturbation around the αdA lesion in the DNA duplex allows APE1 to avoid the initial conformational changes observed earlier in the case of the enzyme binding to an undamaged ligand, abasic-site-, tetrahydrofuran-, or 5,6-dihydrouridine-containing substrates. The αdA structure promotes recognition by the enzyme but dramatically impedes formation of the catalytically competent complex and hydrolysis of the 5'-phosphodiester bond. A step following the chemical reaction, possibly a release of the αdA-containing product, is rate-limiting for the overall enzymatic process, though an α-anomeric nucleotide at the 5' terminus of the DNA nick accelerates dissociation of the enzyme-product complex. Our results show that the efficiency of αdA lesion conversion by APE1 is very low. Nonetheless, αdA repair by APE1 is probably a biologically relevant process.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Desoxiadenosinas/metabolismo , Anisotropia , DNA/química , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Desoxiadenosinas/química , Humanos , Cinética , Ligação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato
2.
Biochemistry (Mosc) ; 76(2): 273-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21568862

RESUMO

Human major apurinic/apyrimidinic endonuclease (APE1) is a multifunctional enzyme that plays a central role in DNA repair through the base excision repair (BER) pathway. Besides BER, APE1 is involved in an alternative nucleotide incision repair (NIR) pathway that bypasses glycosylases. We have analyzed the conformational dynamics and the kinetic mechanism of APE1 action in the NIR pathway. For this purpose we recorded changes in the intensity of fluorescence of 2-aminopurine located in two different positions in a substrate containing dihydrouridine (DHU) during the interaction of the substrate with the enzyme. The enzyme was found to change its conformation within the complex with substrate and also within the complex with the reaction product, and the release of the enzyme from the complex with the product seemed to be the limiting stage of the enzymatic process. The rate constants of the catalytic cleavage of DHU-containing substrates by APE1 were comparable with the appropriate rate constants for substrates containing apurinic/apyrimidinic site or tetrahydrofuran residue, which suggests that NIR is a biologically important process.


Assuntos
Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , 2-Aminopurina/química , Dano ao DNA , Primers do DNA/química , Fluorometria , Humanos , Cinética , Conformação Molecular , Especificidade por Substrato
3.
J Biomol Struct Dyn ; 26(5): 637-52, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19236113

RESUMO

APE1 is a multifunctional enzyme that plays a central role in base excision repair (BER) of DNA. APE1 is also involved in the alternative nucleotide incision repair (NIR) pathway. We present an analysis of conformational dynamics and kinetic mechanisms of the full-length APE1 and truncated NDelta61-APE1 lacking the N-terminal 61 amino acids (REF1 domain) in BER and NIR pathways. The action of both enzyme forms were described by identical kinetic schemes, containing four stages corresponding to formation of the initial enzyme-substrate complex and isomerization of this complex; when a damaged substrate was present, these stages were followed by an irreversible catalytic stage resulting in the formation of the enzyme-product complex and the equilibrium stage of product release. For the first time we showed, that upon binding AP-containing DNA, the APE1 structure underwent conformational changes before the chemical cleavage step. Under BER conditions, the REF1 domain of APE1 influenced the stability of both the enzyme-substrate and enzyme-product complexes, as well as the isomerization rate, but did not affect the rates of initial complex formation or catalysis. Under NIR conditions, the REF1 domain affected both the rate of formation and the stability of the initial complex. In comparison with the full-length protein, NDelta61-APE1 did not display a decrease in NIR activity with a dihydrouracil-containing substrate. BER conditions decrease the rate of catalysis and strongly inhibit the rate of isomerization step for the NIR substrates. Under NIR conditions AP-endonuclease activity is still very efficient.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Primers do DNA/química , Humanos , Cinética , Transdução de Sinais , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA