RESUMO
INTRODUCTION: Digital microscopy transformation, the basis for the virtual microscopy applications, is a challenge but also a requirement in modern Medical Education. This paper presents the scope, background, methods, and results of the project "Digital Transformation of Histology and Histopathology by Virtual Microscopy (VM) for an Innovative Medical School Curriculum", VM3.0, funded by the European Union under the Erasmus+ framework (ref.no.2022-1- RO01-KA220-HED-000089017). The project was initiated at Grigore T. Popa University of Medicine and Pharmacy, IaÈi, Romania, with the support of Euroed Foundation, IaÈi, and cooperation of University partners from Gdansk (Poland), Plovdiv (Bulgaria), Alicante (Spain), and Patras (Greece) aimed to implement digital histology and histopathology teaching in a common network. MATERIALS AND METHODS: The backbone of the project was the development of a Digital Slide Platform based on the scans of histological slides collected from all the partners of the participating universities and the creation of a simple and fast digital/internet communication tool that could be used to improve histology and histopathology teaching of medical and natural sciences students. The construction of a Virtual Microscopy Library (VML) has been based on the acquisition of whole scans of high-quality histological slides stained by hematoxylin and eosin (H&E) and other classical staining methods and description of various organs' details in English as well as respective languages of the project's partners. The VML can be used for different approches, both for students' instruction in classes as well as for individual students' work and self-testing. Universities from other countries could use the modal structure of the developed VML system on the condition that more slides are provided and the implementation of national language(s) is implemented. CONCLUSIONS: The combined efforts of all university partners allowed to establish the dynamic low-cost virtual microscopy educational system. The VM system could help unify the standards of cytology, histology, and histopathology teaching in a quest for the digital transformation of the European educational system.
Assuntos
Currículo , Histologia , Histologia/educação , Humanos , Microscopia/métodos , Educação Médica/métodos , Biologia/educação , CitologiaRESUMO
Prostate cancer is a prevalent malignancy in male patients, having diverse clinical outcomes. The follow-up of patients diagnosed with prostate cancer involves the evaluation of renal function, because its impairment reduces patient survival rates and adds complexity to their treatment and clinical care. This study aimed to investigate the relationship between renal function parameters and distinctive molecular subtypes of prostate adenocarcinomas, defined by the immunoexpression of the SPINK1, ERG, HOXB13, and TFF3 markers. The study group comprised 72 patients with prostate cancer and associated chronic kidney disease (CKD) who underwent radical prostatectomy. Histopathological, molecular, and renal parameters were analyzed. Patients were categorized based on ERG/SPINK1 and HOXB13/TFF3 status, and correlations with renal function and prognostic grade groups were assessed. The ERG+/SPINK1+ subgroup exhibited significantly higher postoperative CKD stages and serum creatinine levels compared to the ERG+/SPINK1- subgroup. This suggests an intricate relationship between SPINK1 overexpression and renal function dynamics. The HOXB13-/TFF3+ subgroup displayed higher preoperative serum creatinine levels and CKD stages than the HOXB13-/TFF3- subgroup, aligning with TFF3's potential role in renal function. Furthermore, the study revealed associations between CKD stages and prognostic grade groups in different molecular subtypes, pointing out an intricate interplay between renal function and tumor behavior. Although the molecular classification of prostate acinar ADK is not yet implemented, this research underscores the variability of renal function parameters in different molecular subtypes, offering potential insights into patient prognosis.
RESUMO
The conundrum of Cannabis sativa's applications for therapeutical purposes is set apart by the hundreds of known and commercially available strains, the social, cultural and historical context, and the legalization of its use for medical purposes in various jurisdictions around the globe. In an era where targeted therapies are continuously being developed and have become the norm, it is imperative to conduct standardized, controlled studies on strains currently cultivated under Good Manufacturing Practices (GMP) certification, a standard that guarantees the quality requirements for modern medical and therapeutic use. Thus, the aim of our study is to evaluate the acute toxicity of a 15.6% THC: <1% CBD, EU-GMP certified, Cannabis sativa L. in rodents, following the OECD acute oral toxicity guidelines, and to provide an overview of its pharmacokinetic profile. Groups of healthy female Sprague-Dawley rats were treated orally with a stepwise incremental dose, each step using three animals. The absence or presence of plant-induced mortality in rats dosed at one step determined the next step. For the EU GMP-certified Cannabis sativa L. investigated, we determined an oral LD50 value of over 5000 mg/kg in rats and a human equivalent oral dose of ≈806.45 mg/kg. Additionally, no significant clinical signs of toxicity or gross pathological findings were observed. According to our data, the toxicology, safety and pharmacokinetic profile of the tested EU-GMP-certified Cannabis sativa L. support further investigations through efficacy and chronic toxicity studies in preparation for potential future clinical applications and especially for the treatment of chronic pain.
RESUMO
Homeobox B13 (HOXB13) and trefoil factor 3 (TFF3) are novel candidates for the classification of prostate cancer (PC) in molecular subtypes that could predict the clinical evolution of patients. The aim of our study was to analyze the possible associations between HOXB13 and TFF3 immunohistochemical (IHC) expression in sporadic prostate adenocarcinoma (PAC), the potential prognostic value in relation to the classical clinico-pathological parameters, as well as their role in defining distinct molecular subtypes of this malignancy. The study group comprised 105 patients diagnosed with PAC who underwent radical prostatectomy. IHC exam was performed using anti-HOXB13 and anti-TFF3 antibodies and a scoring system that permit the separation of the cases into two subgroups, with low and high immunoexpression, respectively. The statistical analysis evaluated the relationship between the two immunomarkers and clinico-pathological parameters. The Kaplan-Meier curves and log-rank Mantel-Cox test were used for assessing the prostate-specific antigen (PSA)-progression free survival. Four subgroups of PAC were defined based on the IHC overexpression and low immunoexpression of HOXB13 and TFF3. High HOXB13 and TFF3 immunoexpression was commonly identified in cases characterized by a Gleason score over 7, a G4 or G5 dominant pattern, a grade group of 3 or 4 and a preoperatory PSA serum level over 20 ng/mL. HOXB13 overexpression was also associated with pathological tumor-node-metastasis (pTNM) stage. The subgroup with both low HOXB13 and TFF3 immunoexpression had the highest PSA-progression free interval, whereas the subgroup with high HOXB13 immunoexpression and low TFF3 immunoexpression presented the lowest rate, but no statistically significant differences were registered. Our results sustain the role of HOXB13 and TFF3 in the stratification of PAC. Further investigations in larger cohorts are imposed to validate the clinical significance of these subgroups in the diagnostic and prognostic of PAC.
Assuntos
Adenocarcinoma , Neoplasias da Próstata , Proteínas de Homeodomínio , Humanos , Masculino , Prognóstico , Antígeno Prostático Específico , Fator Trefoil-3RESUMO
Background and objectives. In forensic medicine, the postmortem determination of glycated hemoglobin (HbA1c) helps identify undiagnosed cases of diabetes or cases with uncontrolled glycemic status. In order to contribute to the solidification of thanatochemistry, both globally and especially nationally, we aimed to determine this biomarker postmortem, for the first time in our institution, in order to identify undiagnosed pre-mortem diabetics, as well as those with inadequate glycemic control. Materials and Methods. Our research consisted of analyzing a total number of 180 HbA1c values, 90 determinations from the peripheral blood and 90 from the central blood. The determination of HbA1c was performed by means of a fully automatic analyzer (HemoCue HbA1c 501), certified by the National Glycohemoglobin Standardization Program (NGSP)/Diabetes Control and Complications Trial (DCCT) and calibrated according to the standards developed by the International Federation of Clinical Chemistry (IFCC). According to ADA criteria, HbA1c values can provide us with the following information about the diagnosis of diabetes: normal 4.8-5.6%; prediabetes 5.7-6.4%; diabetes ≥ 6.5%. Results. A considerable number of cases with an altered glycemic status (cases that had HbA1c values equal to or greater than 5.7%) were identified-51% demonstrable by peripheral blood determinations and 41% by central blood determinations. Notably, 23 people with diabetes (25%) were identified by analyzing the peripheral blood; 18 other people with diabetes (20%) were identified by analyzing the central blood. Conclusions. Our study managed to confirm the antemortem diagnosis of DM using a simple point-of-care analyzer and applying standardized and certified criteria on HbA1c levels measured postmortem. We also identified a considerable number of cases with DM in patients with no antemortem history of glucose imbalance-at least 20% more cases. Although the two different sites used for blood collection showed a strong statistical correlation, it seems that the peripheral site could have a higher sensibility in detecting postmortem altered glycemic status.
Assuntos
Complicações do Diabetes , Diabetes Mellitus , Glicemia , Diabetes Mellitus/diagnóstico , Hemoglobinas Glicadas/análise , Testes Hematológicos , HumanosRESUMO
The prostate cancer is a heterogeneous disorder concealing different phenotypical and functional subtypes of cancer cells. This heterogeneity mirrors the normal prostate cell lineages whose alterations represent the starting points of the carcinogenesis mechanism. The histological structure of the prostate comprises two main types of cells: epithelial and stromal, with a stromal to epithelial ratio of 2:1. The prostate acini are lined by a contiguous layer composed of four different subtypes of epithelial cells: secretory luminal, basal, neuroendocrine, and transit-amplifying. The epithelial component is enclosed in a stromal tissue, consisting of several types of cells: smooth muscle cells (the most numerous cell type), fibroblasts, and myofibroblasts. Despite their quite similar morphological appearance in light microscopy, the molecular markers expressed by the normal epithelial and stromal prostatic components, as well as the stem cells show that the prostatic cells are not equal. Numerous efforts have been made to identify the profile of prostate stem cells, and their role in cellular turnover and morphogenesis of the prostatic tissue, by using experimental and/or human studies. Consequently, several hypotheses regarding the location and the phenotype of these cells were formulated and tested, mainly in animal models. The molecular mapping of normal human prostate tissue might be the key for unlocking the intricate mechanisms of prostate carcinogenesis. Within this context, the prostatic cancer stem cells are thought to play an important role in tumor initiation, progression, recurrence and also therapy resistance. The cancerous phenotype of a stem cell can be reached via multiple genetic trajectories and epigenetic alterations, resulting in different subclonal populations of cancer stem cells, thus explaining the heterogeneity of the prostatic neoplasia. Future efforts should be directed towards better understanding of the relationship and interactions between these cancer stem cells subpopulations, their microenvironments, and also towards characterizing the signaling pathways and molecules involved in the regulation of prostatic cancer stem cells. The results of these studies could offer a different, more comprehensible perspective for a new, molecular classification of prostate cancer, overlapping the existing histological one.