Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
mBio ; 13(3): e0302221, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420473

RESUMO

Fusobacterium nucleatum, an anaerobic Gram-negative bacterium frequently found in the human oral cavity and some extra-oral sites, is implicated in several important diseases: periodontitis, adverse pregnancy outcomes, and colorectal cancer. To date, how this obligate anaerobe copes with oxidative stress and host immunity within multiple human tissues remains unknown. Here, we uncovered a critical role in this process of a multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins, which are induced when fusobacterial cells are exposed to hydrogen peroxide. Comparative transcriptome analysis revealed that the response regulator ModR regulates a large regulon that includes trx, ccdA, and many metabolic genes. Significantly, specific mutants of the msrAB locus, including msrAB, are sensitive to reactive oxygen species and defective in adherence/invasion of colorectal epithelial cells. Strikingly, the msrAB mutant is also defective in survival in macrophages, and it is severely attenuated in virulence in a mouse model of preterm birth, consistent with its failure to spread to the amniotic fluid and colonize the placenta. Clearly, the MsrAB system regulated by the two-component system ModRS represents a major oxidative stress defense pathway that protects fusobacteria against oxidative damage in immune cells and confers virulence by enabling attachment and invasion of multiple target tissues. IMPORTANCE F. nucleatum colonizes various human tissues, including oral cavity, placenta, and colon. How this obligate anaerobe withstands oxidative stress in host immune cells has not been described. We report here that F. nucleatum possesses a five-gene locus encoding a fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin- and cytochrome c-like proteins. Regulated by ModRS, MsrAB is essential for resistance to reactive oxygen species, adherence/invasion of colorectal epithelial cells, and survival in macrophage. Unable to colonize placenta and spread to amniotic fluid, the msrAB mutant failed to induce preterm birth in a murine model.


Assuntos
Neoplasias Colorretais , Nascimento Prematuro , Animais , Proteínas de Transporte , Citocromos c , Feminino , Fusobacterium nucleatum/genética , Humanos , Recém-Nascido , Metionina Sulfóxido Redutases/genética , Camundongos , Estresse Oxidativo , Gravidez , Espécies Reativas de Oxigênio , Tiorredoxinas , Virulência
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074747

RESUMO

A gram-negative colonizer of the oral cavity, Fusobacterium nucleatum not only interacts with many pathogens in the oral microbiome but also has the ability to spread to extraoral sites including placenta and amniotic fluid, promoting preterm birth. To date, however, the molecular mechanism of interspecies interactions-termed coaggregation-by F. nucleatum and how coaggregation affects bacterial virulence remain poorly defined. Here, we employed genome-wide transposon mutagenesis to uncover fusobacterial coaggregation factors, revealing the intertwined function of a two-component signal transduction system (TCS), named CarRS, and a lysine metabolic pathway in regulating the critical coaggregation factor RadD. Transcriptome analysis shows that CarR modulates a large regulon including radD and lysine metabolic genes, such as kamA and kamD, the expression of which are highly up-regulated in the ΔcarR mutant. Significantly, the native culture medium of ΔkamA or ΔkamD mutants builds up abundant amounts of free lysine, which blocks fusobacterial coaggregation with streptococci. Our demonstration that lysine-conjugated beads trap RadD from the membrane lysates suggests that lysine utilizes RadD as its receptor to act as a metabolic inhibitor of coaggregation. Lastly, using a mouse model of preterm birth, we show that fusobacterial virulence is significantly attenuated with the ΔkamA and ΔcarR mutants, in contrast to the enhanced virulence phenotype observed upon diminishing RadD (ΔradD or ΔcarS mutant). Evidently, F. nucleatum employs the TCS CarRS and environmental lysine to modulate RadD-mediated interspecies interaction, virulence, and nutrient acquisition to thrive in the adverse environment of oral biofilms and extraoral sites.


Assuntos
Proteínas de Bactérias , Infecções por Fusobacterium , Fusobacterium nucleatum , Transdução de Sinais/genética , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/metabolismo , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/patogenicidade , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo , Nascimento Prematuro/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27891321

RESUMO

We evaluated the extent of attenuation and immunogenicity of the ΔlppAB and ΔlppAB ΔmsbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. typhimurium or its aforementioned mutant strains. The ΔlppAB ΔmsbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ΔlppAB ΔmsbB mutant-immunized mice when compared to that of the ΔlppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ΔlppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ΔlppAB and ΔlppAB ΔmsbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens.


Assuntos
Acetiltransferases/deficiência , Lipoproteínas/deficiência , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Fatores de Virulência/deficiência , Administração Oral , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Fezes/química , Imunoglobulina A/análise , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Camundongos , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Salmonella typhimurium/genética , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
4.
Clin Vaccine Immunol ; 23(7): 586-600, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170642

RESUMO

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.


Assuntos
Adenovírus Humanos/genética , Portadores de Fármacos , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Esquemas de Imunização , Injeções Intramusculares , Interferon gama/metabolismo , Macaca fascicularis , Masculino , Camundongos , Peste/patologia , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Replicação Viral , Yersinia pestis/genética , Yersinia pestis/imunologia
5.
Proc Natl Acad Sci U S A ; 113(3): 722-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733683

RESUMO

Necrotizing fasciitis (NF) caused by flesh-eating bacteria is associated with high case fatality. In an earlier study, we reported infection of an immunocompetent individual with multiple strains of Aeromonas hydrophila (NF1-NF4), the latter three constituted a clonal group whereas NF1 was phylogenetically distinct. To understand the complex interactions of these strains in NF pathophysiology, a mouse model was used, whereby either single or mixed A. hydrophila strains were injected intramuscularly. NF2, which harbors exotoxin A (exoA) gene, was highly virulent when injected alone, but its virulence was attenuated in the presence of NF1 (exoA-minus). NF1 alone, although not lethal to animals, became highly virulent when combined with NF2, its virulence augmented by cis-exoA expression when injected alone in mice. Based on metagenomics and microbiological analyses, it was found that, in mixed infection, NF1 selectively disseminated to mouse peripheral organs, whereas the other strains (NF2, NF3, and NF4) were confined to the injection site and eventually cleared. In vitro studies showed NF2 to be more effectively phagocytized and killed by macrophages than NF1. NF1 inhibited growth of NF2 on solid media, but ExoA of NF2 augmented virulence of NF1 and the presence of NF1 facilitated clearance of NF2 from animals either by enhanced priming of host immune system or direct killing via a contact-dependent mechanism.


Assuntos
Aeromonas hydrophila/patogenicidade , Coinfecção/microbiologia , Fasciite Necrosante/microbiologia , Aeromonas hydrophila/genética , Aeromonas hydrophila/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Progressão da Doença , Fasciite Necrosante/patologia , Genes Bacterianos , Injeções , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Movimento , Especificidade de Órgãos , Fagocitose , Células RAW 264.7 , Análise de Sobrevida , Virulência
6.
NPJ Vaccines ; 1: 16007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29263851

RESUMO

Zika virus (ZIKV) is a member of the family Flaviviridae, genus Flavivirus, and is transmitted by Aedes sp. mosquitoes. There are three genetic lineages of ZIKV: the East African, West African and Asian lineages. Until recently, Zika fever (ZF) has normally been considered a rare, mild febrile disease, but reports since 2012 have shown potentially severe complications associated with ZIKV infection, including microcephaly and Guillain-Barré syndrome. There are no licensed vaccines for ZIKV; however, many vaccine platforms/approaches that have been utilised for other flavivirus vaccines are being applied to ZIKV. Given the current outbreak of ZIKV in the Americas with its associated risks to pregnancy, we summarise what is known about the virus, how knowledge of currently licensed flavivirus vaccines can be applied to ZIKV vaccine development and the assessments of potential challenges for ZIKV vaccine testing and evaluation.

7.
NPJ Vaccines ; 1: 16020, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29263858

RESUMO

We showed recently that the live-attenuated Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants of Yersinia pestis CO92 provided short-term protection to mice against developing subsequent lethal pneumonic plague. These mutants were either deleted for genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB) and the attachment invasion locus (Ail) (Δlpp ΔmsbB Δail) or contained a modified version of the ail gene with diminished virulence (Δlpp ΔmsbB::ailL2). Here, long-term immune responses were first examined after intramuscular immunisation of mice with the above-mentioned mutants, as well as the newly constructed Δlpp ΔmsbB Δpla mutant, deleted for the plasminogen-activator protease (pla) gene instead of ail. Y. pestis-specific IgG levels peaked between day 35 and 56 in the mutant-immunised mice and were sustained until the last tested day 112. Splenic memory B cells peaked earlier (day 42) before declining in the Δlpp ΔmsbB::ailL2 mutant-immunised mice while being sustained for 63 days in the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice. Splenic CD4+ T cells increased in all immunised mice by day 42 with differential cytokine production among the immunised groups. On day 120, immunised mice were exposed intranasally to wild-type (WT) CO92, and 80-100% survived pneumonic challenge. Mice immunised with the above-mentioned three mutants had increased innate as well as CD4+ responses immediately after WT CO92 exposure, and coupled with sustained antibody production, indicated the role of both arms of the immune response in protection. Likewise, rats vaccinated with either Δlpp ΔmsbB Δail or the Δlpp ΔmsbB Δpla mutant also developed long-term humoral and cell-mediated immune responses to provide 100% protection against developing pneumonic plague. On the basis of the attenuated phenotype, the Δlpp ΔmsbB Δail mutant was recently excluded from the Centers for Disease Control and Prevention select agent list.

8.
Clin Vaccine Immunol ; 22(12): 1255-68, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446423

RESUMO

Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.


Assuntos
Mutação , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Yersinia pestis/genética , Yersinia pestis/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Deleção de Genes , Imunidade Celular , Imunidade Humoral , Imunização , Injeções Intramusculares , Lipoproteínas/imunologia , Camundongos , Peste/imunologia , Peste/microbiologia , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
9.
Infect Immun ; 83(5): 2065-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754198

RESUMO

The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).


Assuntos
Testes Genéticos/métodos , Mutagênese , Peste/microbiologia , Fatores de Virulência/genética , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Análise de Sobrevida , Virulência
10.
Microb Pathog ; 80: 27-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25697665

RESUMO

We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate.


Assuntos
Deleção de Genes , Lipoproteínas/deficiência , Macrófagos Alveolares/microbiologia , Macrófagos/microbiologia , Peptídeo Hidrolases/deficiência , Ativadores de Plasminogênio/deficiência , Yersinia pestis/crescimento & desenvolvimento , Animais , Células Cultivadas , Humanos , Imunidade Inata , Camundongos , Viabilidade Microbiana , Vacina contra a Peste , Vacinas Atenuadas , Virulência , Yersinia pestis/genética
11.
Infect Immun ; 83(4): 1318-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605764

RESUMO

Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.


Assuntos
Aciltransferases/genética , Proteínas da Membrana Bacteriana Externa/genética , Lipoproteínas/genética , Peste/imunologia , Fatores de Virulência/genética , Yersinia pestis/patogenicidade , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana/genética , Aderência Bacteriana/imunologia , Linhagem Celular , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Feminino , Deleção de Genes , Gentamicinas/farmacologia , Células HeLa , Humanos , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Peste/patologia , Yersinia pestis/genética , Yersinia pestis/imunologia
12.
Appl Environ Microbiol ; 80(14): 4162-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24795370

RESUMO

The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.


Assuntos
Aeromonas hydrophila/genética , Fasciite Necrosante/microbiologia , Genes Bacterianos , Fatores de Virulência/genética , Aeromonas hydrophila/isolamento & purificação , Aeromonas hydrophila/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Modelos Animais de Doenças , Enterotoxinas/metabolismo , Feminino , Água Doce/microbiologia , Estudos de Associação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Camundongos , Filogenia , Peste/microbiologia , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Microbiologia da Água
13.
Infect Immun ; 82(6): 2485-503, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686064

RESUMO

Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.


Assuntos
Lipoproteínas/metabolismo , Peste/microbiologia , Ativadores de Plasminogênio/metabolismo , Yersinia pestis/patogenicidade , Análise de Variância , Animais , Anticorpos Antibacterianos/metabolismo , Quimiocinas/metabolismo , Contagem de Colônia Microbiana , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipoproteínas/genética , Macrófagos/microbiologia , Camundongos , Peste/imunologia , Ativadores de Plasminogênio/genética , Virulência , Yersinia pestis/genética , Yersinia pestis/imunologia
14.
Microb Pathog ; 55: 39-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23063826

RESUMO

The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersinia pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD(50). Intranasal infection of mice with 15 LD(50) of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24-72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy of antimicrobial countermeasures in real time.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Peste/microbiologia , Yersinia pestis/química , Animais , Animais não Endogâmicos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Genes Reporter , Humanos , Levofloxacino , Luciferases/genética , Luciferases/metabolismo , Camundongos , Ofloxacino/farmacologia , Virulência/efeitos dos fármacos , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/genética , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA