Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Reprod Biomed ; 21(3): 245-254, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37122887

RESUMO

Background: The use of frozen embryo transfers (FET) in assisted reproduction has increased worldwide. Controlled ovarian hyperstimulation in a fresh transfer may impair endometrial-embryo synchronicity. However, there is conflicting evidence on live birth rates (LBR) and clinical pregnancy rates (CPR). Objective: To compare LBRs and CPRs between single autologous day 5 fresh vs. vitrified blastocyst transfer cycles, to investigate the impact of controlled ovarian hyperstimulation on embryo-endometrium asynchrony. Materials and Methods: A large cross-sectional analysis of 6002 embryo transfers (ET) comprised 3774 fresh and 2228 FET cycles from 2016 to 2019. Multivariate and subgroup analysis were performed for high responders ( > 20 oocytes). Results: Univariate analysis showed no difference in LBR (28.3% vs. 27.4%, p = 0.43) and CPR (32.2% vs. 30.9%, p = 0.30); however, multivariate analysis demonstrated significantly lower LBR (OR 0.864, p = 0.046, 95% CI 0.749-0.997) and CPR (OR 0.852, p = 0.024, 95% CI 0.742-0.979) in FET compared to fresh ETs. Younger participant age, previous in vitro fertilization pregnancy, advanced blastocyst expansion, higher trophectoderm quality, and lower cumulative number of ETs all improved the odds of LBR and CPR. Conventional in vitro fertilization, rather than intracytoplasmic sperm injection, improved CPR but not LBR. Body mass index affected neither LBR nor CPR. In the subgroup, multivariate analysis of high responders showed no difference in LBR or CPR. Conclusion: This study demonstrates relatively higher LBR and CPR of nearly 14% for fresh ETs compared to FETs, in multivariate analysis. A universal freeze-all strategy, without appropriate indication, may lead to suboptimal outcomes. In high responders, freeze-all cycles may be beneficial, as outcomes appear similar.

2.
Reproduction ; 165(4): 407-416, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757298

RESUMO

In brief: miR-23b-3p expression is increased in fertile endometrium during receptivity. This study investigates the function of miR-23b-3p on endometrial adhesion and its downstream targets. Abstract: The human endometrium undergoes dramatic remodeling throughout the menstrual cycle that is essential for successful blastocyst attachment and implantation in the mid-secretory (receptive) phase. microRNA (miR) plays a role in the preparation of endometrial receptivity. miR-23b-3p expression is increased in fertile endometrium during receptivity. Here, we aimed to investigate miR-23b-3p function during receptivity. qPCR and in situ hybridization were used to investigate the expression and localization of miR-23b-3p in human endometrium, respectively. Ishikawa cells (endometrial epithelial cell line) and endometrial organoid-derived epithelial cells were transfected with miR-23b-3p mimic, and trophoblast progenitor spheroid (blastocyst surrogate) adhesion assay was used to determine effects on blastocyst adhesion to endometrial cells. We demonstrated that miR-23b-3p was significantly upregulated in the fertile endometrium of the receptive phase compared to the non-receptive, proliferative phase. No difference was identified for the expression of miR-23b-3p between fertile and infertile mid-secretory phase endometrium. miR-23b-3p localized to the epithelium and stroma in the mid-secretory phase but was undetectable in the proliferative phase of fertile endometrium. Functionally, miR-23-3p overexpression in Ishikawa cells and fertile endometrial organoid-derived epithelial cells significantly improved their adhesive capacity to trophoblast progenitor spheroids. miR-23b-3p overexpression in infertile endometrial organoid-derived epithelial cells did not improve adhesion. Among 10 miR-predicted gene targets examined, miR-23b-3p overexpression in Ishikawa cells significantly reduced the expression of MET, secreted frizzled-related protein 4 (SFRP4) and acyl-CoA dehydrogenase short/branched chain (ACADSB) compared to control. The reduction of SFRP4 after miR23b-3p overexpression was confirmed by immunoblotting in fertile organoid-derived epithelial cells. SFRP4 expression in fertile endometrium exhibited an inverse expression pattern compared to miR-23b-3p and was higher in the proliferative phase compared to the mid-secretory phase. Overall, miR-23b-3p is likely a critical regulator of endometrial epithelial adhesion and receptivity.


Assuntos
Implantação do Embrião , MicroRNAs , Feminino , Humanos , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adesão Celular
3.
Int J Reprod Biomed ; 18(7): 491-500, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32803114

RESUMO

BACKGROUND: Studies have suggested that embryo-endometrial developmental asynchrony caused by slow-growing embryos can be corrected by freezing the embryo and transferring it back in a subsequent cycle. Therefore, we hypothesized that live birth rates (LBR) would be higher in frozen embryo transfer (FET) compared with fresh embryo transfers. OBJECTIVE: To compare LBR between fresh and FET cycles. MATERIALS AND METHODS: A cross-sectional analysis of 10,744 single autologous embryo transfer cycles that used a single cleavage stage embryo was performed. Multivariate analysis was performed to compare LBR between FET and fresh cycles, after correcting for various confounding factors. Sub-analysis was also performed in cycles using slow embryos. RESULTS: Both LBR (19.13% vs 14.13%) and clinical pregnancy (22.48% vs 16.25%) rates (CPR) were higher in the fresh cycle group (p < 0.00). Multivariate analysis for confounding factors also confirmed that women receiving a frozen-thawed embryo had a significantly lower LBR rate compared to those receiving a fresh embryo (OR 0.76, 95% CI 0.68-0.86, p < 0.00). In the sub-analysis of 1,154 cycles using slow embryos, there was no statistical difference in LBR (6.40% vs 6.26%, p = 0.92) or CPR (8.10% vs 7.22%, p = 0.58) between the two groups. CONCLUSION: This study shows a lower LBR in FET cycles when compared to fresh cycles. Our results suggest that any potential gains in LBR due to improved embryo-endometrial synchrony following FET are lost, presumably due to freeze-thaw process-related embryo damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA