RESUMO
In this work, both experimental and theoretical methods were used to study the photophysical and metal ion binding properties of a series of new aminobenzamide-aminonaphthalimide (2ABZ-ANAPIM) fluorescent dyads. The 2-aminobenzamide (2ABZ) and 6-aminonaphthalimide (ANAPIM) fluorophores were linked through alkyl chains (C2 to C6) to obtain four fluorescent dyads. These dyads present a highly efficient (0.61 to 0.98) Förster Resonant Energy Transfer (FRET) from the 2ABZ to the ANAPIM due to the 2ABZ emission and ANAPIM excitation band overlap and the configurational stacking of both aromatic systems which allows the energy transfer. These dyads interact with Cu2+ and Hg2+ metal ions in solution inhibiting the FRET mechanism by the cooperative coordination of both 2ABZ and ANAPIM moieties. Both experimental and theoretical results are consistent and describe clearly the photophysical and coordination properties of these new dyads.
RESUMO
In this work, the Förster resonance energy transfer (FRET) between carbon dots (CDs) as energy donors and riboflavin (RF) as an energy acceptor was optimized and the main parameters that characterize the FRET process were determined. The results were successfully applied in the development of an ultrasensitive ratiometric fluorescent sensor for the selective and sensitive determination of RF in different beverages. Water-soluble CDs with a high quantum yield (54%) were synthesized by a facile and direct microwave-assisted technique. The CDs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Zeta potential, and UV-visible and molecular fluorescence spectroscopy. The study of the FRET process at two donor concentrations showed that the energy transfer efficiency decreases as the donor concentration increases, confirming its dependence on the acceptor:donor ratio in nanoparticle-based systems. The results show the importance of optimizing the FRET process conditions to improve the corresponding output signal. The variation in the ratiometric signal with the concentration of RF showed linearity in a concentration range of 0 to 11 µM with R2 = 0.9973 and a detection limit of 0.025 µM. The developed nanosensor showed good selectivity over other possible types of interference. The sensor was then applied for the determination of RF in beverage samples using the standard addition method with recoveries between 96% and 106%. Preliminary cytocompatibility tests carried out with breast cancer cells (MDA-MB-231) revealed the nanosensor to be cytocompatible in its working concentration regime, even after long incubation times with cells. Altogether, the developed RF determination method was found to be fast, low-cost, highly sensitive, and selective and can be extended to other samples of interest in the biological and food sectors. Moreover, thanks to its long-lasting cytocompatibility, the developed platform can also be envisaged for other applications of biological interest, such as intracellular sensing and staining for live cell microscopy.
RESUMO
In this work, nanoclusters (NCs) of Cu and Ag capped with hyperbranched polyethyleneimine (PEI) were prepared using chemical reduction by a one-step hydrothermal method. The PEI coated-NCs were characterized by high-resolution transmission electron microscopy, ζ potential, thermogravimetric analysis, dynamic light scattering, Fourier-transform infrared, UV-visible, and fluorescence spectroscopy. The PEI-NCs exhibited strong absorption and fluorescence, high stability, and excellent water dispersibility. The resulting PEI-NCs showed a reversible and linear response of fluorescence intensity with pH over a wide range (3-11); however, PEI-AgNCs showed a better reversibility and sensitivity than PEI-CuNCs. Unlike several types of pH sensors based on modified NCs, which are based on a nanoparticle aggregation/disaggregation mechanism, the response of our sensor is based on a photoinduced electron transfer process, which gives it a high reversibility. This method was successfully applied in pH measurements in tap water and green tea samples, with excellent results, indicating its practical utility for these applications. A visual device was obtained by immobilizing PEI-AgNCs into agarose hydrogels at different pH values. The results show that the proposed sensor can be used as a pH visual detector. Besides, the light emission of the nanosensor was corroborated by fluorescence microscopy, confirming that the nanosensor based on PEI-AgNCs has great potential to be used in cellular imaging.
Assuntos
Nanopartículas Metálicas , Polietilenoimina , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Tomografia por Emissão de Pósitrons , PrataRESUMO
Polycyclic hydrocarbons constitute an important source of very dangerous pollutants. Different materials have been used as adsorbent for their removal, but they present difficulties in the separation process. The use of a material based on metal-organic framework (MOF) with large pores and high surface area and magnetic nanoparticles with superparamagnetic properties is an interesting strategy. In this work a magnetic composite based on MOF (MIL-101) and Fe3O4 magnetic nanoparticles (Fe3O4/MIL-101) was obtained by a simple synthesis method and used as adsorbent for the removal of anthracene. The composite was characterized by transmission electron microscopy, x-ray powder diffraction and vibrating sample magnetometer. The results showed that kinetic data followed a first-order model and equilibrium data were well fitted by the Langmuir model. The maximum adsorption capacity was 12.7 mg g-1 at pH 6 in 60 min of exposure. The composite was applied for the adsorption of anthracene in water samples reaching more than 95% of anthracene removal in 1 h of contact. The composite material was effectively separated using an external magnet, and no further centrifugation or filtration processes were needed. This composite is a great alternative to remove polycyclic hydrocarbons from water samples and has potential to extend to the removal of other contaminants.
RESUMO
In this paper, we report the synthesis, characterization, and application of a new fluorescent nanosensor based on water-soluble CdTe quantum dots (QDs) coated with cysteamine (CA) for the determination of folic acid (FA). CdTe/CA QDs were characterized by high-resolution transmission electron microscopy, the zeta potential, and Fourier-transform infrared (FT-IR), UV-visible, and fluorescence spectroscopy. CdTe QDs coated with mercaptopropionic acid (MPA) and glutathione (GSH) were prepared for comparison purposes. The effect of FA on the photoluminescence intensity of the three thiol-capped QDs at pH 8 was studied. Only CdTe/CA QDs showed a notable fluorescence quenching in the presence of FA. Then, a nanosensor based on the fluorescence quenching of the CdTe QDs at pH 8 was explored. Under optimum conditions, the calibration curve showed a linear fluorescence quenching response in a concentration range of FA from 0.16 to 16.4 µM (R2 = 0.9944), with a detection limit of 0.048 µM. A probable mechanism of fluorescence quenching was proposed. The nanosensor showed good selectivity over other possible interferences. This method has been applied for FA quantification in orange beverage samples with excellent results (recoveries from 98.3 to 103.9%). The good selectivity, sensitivity, low cost, and rapidity make CdTe /CA QDs a suitable nanosensor for FA determination.
RESUMO
In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608-750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency (E) up to 95%. The distance between the QDs and dye (r), the Förster distance (R0), and the binding constant (K) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.
RESUMO
A new 'turn-on' Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This 'turn-on' response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.