Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(5): 4121-4134, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155906

RESUMO

Transition-metal dichalcogenides (TMDCs) are unique layered materials with exotic properties. So, examining their structures holds tremendous importance. 2H-MoSe2 (analogous to MoS2; Gr. 6 TMDC) is a crucial optoelectronic material studied extensively using Raman spectroscopy. In this regard, low-frequency Raman (LFR) spectroscopy can probe this material's structure as it reveals distinct vibration modes. Here, we focus on understanding the microstructural evolution of different 2H-MoSe2 morphologies and their layers using LFR scattering. We grew phase-pure 2H-MoSe2 (with variable microstructures) directly on a Mo foil using a two-furnace ambient-pressure chemical vapor deposition (CVD) system by carefully controlling the process parameters. We analyzed the layers of exfoliated flakes after ultrasonication and drop-cast 2H-MoSe2 of different layer thicknesses by choosing different concentrations of 2H-MoSe2 solutions. Further detailed analyses of the respective LFR regions confirm the presence of newly identified Raman signals for the 2H-MoSe2 nanosheets drop-cast on Raman-grade CaF2. Our results show that CaF2 is an appropriate Raman-enhancing substrate compared to Si/SiO2 as it presents new LFR modes of 2H-MoSe2. Therefore, CaF2 substrates are a promising medium to characterize in detail other TMDCs using LFR spectroscopy.

2.
RSC Adv ; 10(25): 14812-14817, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497148

RESUMO

Coordination polymers (CPs) and coordination network solids such as metal-organic frameworks (MOFs) have gained increasing interest during recent years due to their unique properties and potential applications. Preparing 3D printed structures using CP would provide many advantages towards utilization in fields such as catalysis and sensing. So far, functional 3D structures were printed mostly by dispersing pre-synthesized particles of CPs and MOFs within a polymerizable carrier. This resulted in a CP active material dispersed within a 3D polymeric object, which may obstruct or impede the intrinsic properties of the CP. Here, we present a new concept for obtaining 3D free-standing objects solely composed of CP material, starting from coordination metal complexes as the monomeric building blocks, and utilizing the 3D printer itself as a tool to in situ synthesize a coordination polymer during printing, and to shape it into a 3D object, simultaneously. To demonstrate this, a 3D-shaped nickel tetra-acrylamide monomeric complex composed solely of the CP without a binder was successfully prepared using our direct print-and-form approach. We expect that this work will open new directions and unlimited potential in additive manufacturing and utilization of CPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA