Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Anal Chem ; 90(7): 4823-4831, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29542319

RESUMO

Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).


Assuntos
HIV/isolamento & purificação , Imagem Óptica , Patologia Molecular , Smartphone , Zika virus/isolamento & purificação , HIV/genética , Humanos , Internet , Medições Luminescentes , Técnicas de Amplificação de Ácido Nucleico , Zika virus/genética
2.
PLoS One ; 9(1): e83808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416173

RESUMO

Here we describe a method for the detection of Clostridium difficile from stool using a novel low-complexity and rapid extraction process called Heat Elution (HE). The HE method is two-step and takes just 10 minutes, no specialist instruments are required and there is minimal hands-on time. A test method using HE was developed in conjunction with Loop-mediated Isothermal Amplification (LAMP) combined with the real-time bioluminescent reporter system known as BART targeting the toxin B gene (tcdB). The HE-LAMP-BART method was evaluated in a pilot study on clinical fecal samples (tcdB(+), n = 111; tcdB(-), n= 107). The HE-LAMP-BART method showed 95.5% sensitivity and 100% specificity against a gold standard reference method using cytotoxigenic culture and also a silica-based robotic extraction followed by tcdB PCR to control for storage. From sample to result, the HE-LAMP-BART method typically took 50 minutes, whereas the PCR method took >2.5 hours. In a further study (tcdB(+), n = 47; tcdB(-), n= 28) HE-LAMP-BART was compared to an alternative commercially available LAMP-based method, Illumigene (Meridian Bioscience, OH), and yielded 87.2% sensitivity and 100% specificity for the HE-LAMP-BART method compared to 76.6% and 100%, respectively, for Illumigene against the reference method. A subset of 27 samples (tcdB(+), n = 25; tcdB(-), n= 2) were further compared between HE-LAMP-BART, Illumigene, GeneXpert (Cepheid, Sunnyvale, CA) and RIDA®QUICK C. difficile Toxin A/B lateral flow rapid test (R-Biopharm, Darmstadt, Germany) resulting in sensitivities of HE-LAMP-BART 92%, Illumigene 72% GeneXpert 96% and RIDAQuick 76% against the reference method. The HE-LAMP-BART method offers the advantages of molecular based approaches without the cost and complexity usually associated with molecular tests. Further, the rapid time-to-result and simple protocol means the method can be applied away from the centralized laboratory settings.


Assuntos
Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Fezes/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Dosagem de Genes , Humanos , Modelos Biológicos , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Sensibilidade e Especificidade
3.
BMC Biotechnol ; 12: 15, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22546148

RESUMO

BACKGROUND: There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. RESULTS: Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. CONCLUSIONS: LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.


Assuntos
DNA de Plantas/análise , Medições Luminescentes/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plantas Geneticamente Modificadas/genética , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , Análise de Alimentos , Alimentos Geneticamente Modificados , Genoma de Planta , Reação em Cadeia da Polimerase em Tempo Real , Análise de Regressão , Sensibilidade e Especificidade , Zea mays/genética
4.
PLoS One ; 5(11): e14155, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152399

RESUMO

BACKGROUND: The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. PRINCIPAL FINDINGS: Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. CONCLUSIONS: The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings.


Assuntos
Luminescência , Medições Luminescentes/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Polinucleotídeos/genética , Trifosfato de Adenosina/metabolismo , Vírus da Febre Suína Clássica/genética , DNA/genética , DNA/metabolismo , Difosfatos/metabolismo , Cinética , Polinucleotídeos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sulfato Adenililtransferase/metabolismo , Fatores de Tempo
5.
Biochem J ; 397(2): 305-12, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16551268

RESUMO

Firefly luciferase catalyses a two-step reaction, using ATP-Mg2+, firefly luciferin and molecular oxygen as substrates, leading to the efficient emission of yellow-green light. We report the identification of novel luciferase mutants which combine improved pH-tolerance and thermostability and that retain the specific activity of the wild-type enzyme. These were identified by the mutagenesis of solvent-exposed non-conserved hydrophobic amino acids to hydrophilic residues in Photinus pyralis firefly luciferase followed by in vivo activity screening. Mutants F14R, L35Q, V182K, I232K and F465R were found to be the preferred substitutions at the respective positions. The effects of these amino acid replacements are additive, since combination of the five substitutions produced an enzyme with greatly improved pH-tolerance and stability up to 45 degrees C. All mutants, including the mutant with all five substitutions, showed neither a decrease in specific activity relative to the recombinant wild-type enzyme, nor any substantial differences in kinetic constants. It is envisaged that the combined mutant will be superior to wild-type luciferase for many in vitro and in vivo applications.


Assuntos
Vaga-Lumes/enzimologia , Luciferases/genética , Mutagênese , Solventes/química , Animais , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Luciferases/metabolismo , Luminescência , Modelos Químicos , Modelos Moleculares , Mutação , Engenharia de Proteínas , Temperatura
6.
Luminescence ; 19(1): 8-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14981641

RESUMO

Bioluminescence, the conversion of chemical energy into light in living organisms, is dependent on two principal components, an enzyme luciferase and the substrate luciferin. In beetles, the enzyme luciferase has been extensively studied, with significant enzymological, sequence and structural data now available. Furthermore, the enzyme has been employed in a remarkable number of important applications, from microbial detection and medical imaging to GM gene expression studies. However, there is little information regarding the biosynthesis of beetle luciferin, and here we review the literature and speculate as to its evolutionary origins. Luciferin consists of a benzothiazole moiety attached to a thiazole carboxylic acid moiety, the former being rarely observed in nature but the latter being observed in a broad range of biologically derived molecules. Benzothiazoles are, however, observed in melanogenesis and we speculate as to whether this may be relevant to the understanding of luciferin biosynthesis in beetles. This review examines recent novel insights into beetle luciferin recycling and we assess a range of possible biosynthetic mechanisms.


Assuntos
Evolução Biológica , Besouros/enzimologia , Luciferina de Vaga-Lumes/biossíntese , Luminescência , Animais , Besouros/química , Luciferina de Vaga-Lumes/química , Luciferases/fisiologia , Proteínas Luminescentes/biossíntese , Filogenia , Tenericutes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA