Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Death Differ ; 20(1): 97-107, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22935616

RESUMO

The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.


Assuntos
Apoptose/fisiologia , Caenorhabditis elegans/citologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas ras/metabolismo , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dano ao DNA , Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/genética
2.
Genetics ; 157(4): 1531-42, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11290710

RESUMO

Evidence from many organisms indicates that the conserved RecQ helicases function in the maintenance of genomic stability. Mutation of SGS1 and WRN, which encode RecQ homologues in budding yeast and humans, respectively, results in phenotypes characteristic of premature aging. Mutation of SRS2, another DNA helicase, causes synthetic slow growth in an sgs1 background. In this work, we demonstrate that srs2 mutants have a shortened life span similar to sgs1 mutants. Further dissection of the sgs1 and srs2 survival curves reveals two distinct phenomena. A majority of sgs1 and srs2 cells stops dividing stochastically as large-budded cells. This mitotic cell cycle arrest is age independent and requires the RAD9-dependent DNA damage checkpoint. Late-generation sgs1 and srs2 cells senesce due to apparent premature aging, most likely involving the accumulation of extrachromosomal rDNA circles. Double sgs1 srs2 mutants are viable but have a high stochastic rate of terminal G2/M arrest. This arrest can be suppressed by mutations in RAD51, RAD52, and RAD57, suggesting that the cell cycle defect in sgs1 srs2 mutants results from inappropriate homologous recombination. Finally, mutation of RAD1 or RAD50 exacerbates the growth defect of sgs1 srs2 cells, indicating that sgs1 srs2 mutants may utilize single-strand annealing as an alternative repair pathway.


Assuntos
DNA Helicases/fisiologia , Mitose/fisiologia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , Mutagênese , RecQ Helicases , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Nature ; 410(6825): 227-30, 2001 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11242085

RESUMO

In Caenorhabditis elegans, mutations that reduce the activity of an insulin-like receptor (daf-2) or a phosphatidylinositol-3-OH kinase (age-1) favour entry into the dauer state during larval development and extend lifespan in adults. Downregulation of this pathway activates a forkhead transcription factor (daf-16), which may regulate targets that promote dauer formation in larvae and stress resistance and longevity in adults. In yeast, the SIR2 gene determines the lifespan of mother cells, and adding an extra copy of SIR2 extends lifespan. Sir2 mediates chromatin silencing through a histone deacetylase activity that depends on NAD (nicotinamide adenine dinucleotide) as a cofactor. We have surveyed the lifespan of C. elegans strains containing duplications of chromosomal regions. Here we report that a duplication containing sir-2.1-the C. elegans gene most homologous to yeast SIR2-confers a lifespan that is extended by up to 50%. Genetic analysis indicates that the sir-2.1 transgene functions upstream of daf-16 in the insulin-like signalling pathway. Our findings suggest that Sir2 proteins may couple longevity to nutrient availability in many eukaryotic organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiologia , Histona Desacetilases/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Transativadores/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Feminino , Fatores de Transcrição Forkhead , Dosagem de Genes , Duplicação Gênica , Genes Fúngicos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Longevidade/genética , Masculino , Transdução de Sinais , Sirtuína 2 , Sirtuínas , Transativadores/metabolismo , Transativadores/fisiologia , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 97(1): 460-5, 2000 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-10618440

RESUMO

Converging TGF-beta and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-beta pathway. Dauer recovery in these animals is inhibited by the muscarinic antagonist atropine. Muscarinic agonists do not induce dauer recovery of either daf-2 or age-1 mutant animals, which have defects in the insulin-like signaling pathway. These data suggest that a metabotropic acetylcholine signaling pathway activates an insulin-like signal during C. elegans dauer recovery. Analogous and perhaps homologous cholinergic regulation of mammalian insulin release by the autonomic nervous system has been noted. In the parasitic nematode Ancylostoma caninum, the dauer larval stage is the infective stage, and recovery to the reproductive stage normally is induced by host factors. Muscarinic agonists also induce and atropine potently inhibits in vitro recovery of A. caninum dauer arrest. We suggest that host or parasite insulin-like signals may regulate recovery of A. caninum and could be potential targets for antihelminthic drugs.


Assuntos
Ancylostoma/metabolismo , Caenorhabditis elegans/metabolismo , Larva/metabolismo , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Transdução de Sinais , Ancylostomatoidea/metabolismo , Animais , Arecolina/farmacologia , Atropina/farmacologia , Insulina/metabolismo , Neuropeptídeos/farmacologia , Neurotransmissores/agonistas , Neurotransmissores/antagonistas & inibidores , Oxotremorina/farmacologia , Pilocarpina/farmacologia
5.
Genetics ; 148(2): 703-17, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9504918

RESUMO

Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiologia , Proteínas de Helminto/genética , Longevidade/genética , Receptor de Insulina/genética , Reprodução/genética , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Fertilidade/genética , Fatores de Transcrição Forkhead , Genes de Helmintos/genética , Genótipo , Insulina/metabolismo , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Recombinação Genética/genética , Temperatura , Fatores de Transcrição/genética , Zigoto/fisiologia
6.
Nature ; 389(6654): 994-9, 1997 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-9353126

RESUMO

In mammals, insulin signalling regulates glucose transport together with the expression and activity of various metabolic enzymes. In the nematode Caenorhabditis elegans, a related pathway regulates metabolism, development and longevity. Wild-type animals enter the developmentally arrested dauer stage in response to high levels of a secreted pheromone, accumulating large amounts of fat in their intestines and hypodermis. Mutants in DAF-2 (a homologue of the mammalian insulin receptor) and AGE-1 (a homologue of the catalytic subunit of mammalian phosphatidylinositol 3-OH kinase) arrest development at the dauer stage. Moreover, animals bearing weak or temperature-sensitive mutations in daf-2 and age-1 can develop reproductively, but nevertheless show increased energy storage and longevity. Here we show that null mutations in daf-16 suppress the effects of mutations in daf-2 or age-1; lack of daf-16 bypasses the need for this insulin receptor-like signalling pathway. The principal role of DAF-2/AGE-1 signalling is thus to antagonize DAF-16. daf-16 is widely expressed and encodes three members of the Fork head family of transcription factors. The DAF-2 pathway acts synergistically with the pathway activated by a nematode TGF-beta-type signal, DAF-7, suggesting that DAF-16 cooperates with nematode SMAD proteins in regulating the transcription of key metabolic and developmental control genes. The probable human orthologues of DAF-16, FKHR and AFX, may also act downstream of insulin signalling and cooperate with TGF-beta effectors in mediating metabolic regulation. These genes may be dysregulated in diabetes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Helminto/metabolismo , Insulina/metabolismo , Longevidade , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fatores de Transcrição/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/química , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/química , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Proteínas de Helminto/genética , Humanos , Dados de Sequência Molecular , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transdução Genética , Fator de Crescimento Transformador beta/metabolismo
7.
Science ; 277(5328): 942-6, 1997 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9252323

RESUMO

A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos , Longevidade/genética , Receptor de Insulina/genética , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Mapeamento Cromossômico , Sequência Conservada , Ingestão de Energia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dados de Sequência Molecular , Mutação , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Transdução de Sinais
8.
Nature ; 382(6591): 536-9, 1996 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-8700226

RESUMO

A pheromone-induced neurosecretory pathway in Caenorhabditis elegans triggers developmental arrest and an increase in longevity at the dauer diapause stage. The gene age-1 is required for non-dauer development and normal senescence. age-1 encodes a homologue of mammalian phosphatidylinositol-3-OH kinase (PI(3)K) catalytic subunits. Lack of both maternal and zygotic age-1 activity causes dauer formation, whereas animals with maternal but not zygotic age-1 activity develop as non-dauers that live more than twice as long as normal. These data suggest that phosphatidylinositol signalling mediated by AGE-1 protein controls lifespan and the dauer diapause decision.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/enzimologia , Proteínas de Helminto/fisiologia , Longevidade/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Mapeamento Cromossômico , Proteínas de Helminto/genética , Dados de Sequência Molecular , Mutação , Fosfatidilinositol 3-Quinases , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais
9.
Can J Physiol Pharmacol ; 69(11): 1769-73, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1804521

RESUMO

The tibialis anterior (TA) muscle in one leg of normal (C57BL) and dystrophic (dy2j) mice was partially denervated by resection of a part of the lateral popliteal nerve. Two months later the muscle was injected with horseradish peroxidase to permit visualization of the motorneurons that survived. Partial denervation in both C57 and dy2j mice resulted in reduction of the number of motorneurons that supplied the muscle to approximately one-half the normal complement. The surviving motorneurons were found to be significantly larger (about 25%) than their contralateral counterparts. This condition persisted up to 18 months and is not considered to be a transient response to the trauma associated with the partial denervation. When the size of the target tissue was also reduced by extirpation of one-half of TA together with partial denervation, motorneuron size was not found to increase. It is suggested that the increase in size is a response to the metabolic demands placed upon the motorneuron by an increase in the size of the motor unit.


Assuntos
Neurônios Motores/citologia , Denervação Muscular , Músculos/inervação , Distrofia Muscular Animal/patologia , Animais , Contagem de Células , Membro Posterior , Peroxidase do Rábano Silvestre , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA