Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 24(5): 317-333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37936467

RESUMO

AIMS: The aim of this study is to isolate the Millettia pinnata (Karanj) leaf extract for pure compound with anticancer properties and to study the molecular target of the isolates in non-small cell lung cancer cell lines. BACKGROUND: In our earlier research Millettia pinnata leaf extract has demonstrated potential anticancer activities. Thus, in pursuit of the bioactive compounds, the most potential active extract from our previous study was purified. Furthermore, the anticancer properties of the isolated compound karanjin was studied and aimed for apoptosis and restraining growth. METHODS: A novel method was developed through column chromatography for isolation and purification of the compound karanjin from leaf chloroform extract. The purified component was then characterised using FTIR, mass spectrometry, and NMR. An MTT-based cytotoxicity assay was used to analyse cell cytotoxicity, whereas fluorescence staining was used for apoptosis and reactive oxygen species inhibition quantification. Furthermore, the real-time PCR assay was used to determine the molecular mechanism of action in cells causing cytotoxicity induced by karanjin dosing. RESULTS: The anticancer activity of karanjin in A549 cell line exhibited prominent activity revealing IC50 value of 4.85 µM. Conferring the predicted molecular pathway study, karanjin restrains the proliferation of cancer cells through apoptosis, which is controlled by extrinsic pathway proteins FAS/FADD/Caspases 8/3/9. Downregulation of KRAS and dependent gene expression also stopped cell proliferation. CONCLUSION: Karanjin has been identified as a compound with potential effect in non-small cell lung cancer cells. Molecular mechanism for apoptosis and inhibition of reactive oxygen species induced through H2O2 were observed, concluding karanjin have medicinal and antioxidant properties.


Assuntos
Benzopiranos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Extratos Vegetais/farmacologia , Modelos Teóricos
2.
J Biomol Struct Dyn ; 41(4): 1193-1205, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939532

RESUMO

Cocoonase is known to digest the sericin protein that encapsulates the silkworm cocoon's fibroin protein. Silk fibroin and sericin are two types of proteins that make up silk, and accounts for around 20-30% of the overall cocoon weight. The aim of the study was to see the protein-protein interaction (PPI) and molecular dynamic study of sericin, cocoonase and protein-protein docked complex of silkworm by computational approaches. Here motif analysis, phylogenetic analysis, principal component analysis, root-mean-square deviation (RMSD), root mean square fluctuation, radius of gyration, structural and functional study of cocoonase and sericin as well as molecular docking study were carried out. The 33 amino acid residues of cocoonase shows interaction with 38 aa residues of sericin involving 4 disulphide bonds, 22 hydrogen bonds and 319 non-bonded contacts. The confirmational stability and flexibility of both the proteins as well as protein-protein complex were achieved at 70 ns of MD simulation study. RMSD-based data indicated that cocoonase is more stable than sericin and complex, and complex has a greater fluctuation with more compact (higher Rg) value than cocoonase and sericin, inferring higher conformational stability and flexibility of protein-protein complex than cocoonase and sericin. This study provides a new dimension for PPI study by computational approaches.Communicated by Ramaswamy H. Sarma.


Assuntos
Bombyx , Sericinas , Animais , Bombyx/química , Sericinas/química , Sericinas/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA