Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diagnostics (Basel) ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829430

RESUMO

The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.

2.
Molecules ; 26(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535493

RESUMO

With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Atenção à Saúde/normas , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis/tendências , Técnicas Biossensoriais/tendências , Humanos , Monitorização Fisiológica/tendências , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos
3.
Environ Res ; 195: 110802, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33516684

RESUMO

Samples of ambient aerosols were collected at an urban site of eastern central India from monsoon to summer 2016-17 for the characterization of biogenic secondary organic aerosols (BSOA). The BSOA tracers derived from isoprene, α/ß-pinene and ß-caryophyllene in size-distributed aerosols were studied. Concentrations of total SOAI (Isoprene secondary organic aerosols) were found more abundant than α/ß-pinene in summer, while contradictory trends were found in the winter season, where SOAM (monoterpene derived SOA) and SOAS (sesquiterpenes derived SOA) were dominated. Size-distribution study revealed that most of the BSOA were formed in the aerosol phase and dominated in fine mode, except cis-pinonic acid. They were formed in the gaseous phase and partitioned onto the aerosol phase. The alkaline nature of mineral dust particles that triggered the adsorption of gaseous species onto pre-existing particles could be the reason for bimodal size distribution with major coarse mode peak and miner fine mode peak. Temporal variations suggest that the BSOA must be derived from terrestrial vegetation and biomass burning. The isoprene SOC (secondary organic carbon) contributed 0.91%, 1.38%, 0.88% and 1.04% to OC during winter, summer, post-monsoon and monsoon season, respectively. The isoprene SOC in fine mode was found to be higher than the coarse mode.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
4.
Int J Antimicrob Agents ; 56(2): 106054, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32534188

RESUMO

The emergence and rapid spread of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a potentially fatal disease, is swiftly leading to public health crises worldwide. The origin of SARS-CoV-2 infection was first reported in people exposed to a seafood market in Wuhan City, China in December 2019. It has been suggested that the infection is likely to be of zoonotic origin and transmitted to humans through a not-yet-known intermediary. As of 22 May 2020, the World Health Organization reported that there were approximately 4,995,996 confirmed cases and 327,821 deaths. SARS-CoV-2 is transmitted via inhalation or direct contact with droplets from infected people. It has an incubation period ranging from 2 to ≥14 days. The rate of spread of SARS-CoV-2 is greater than that for severe acute respiratory syndrome coronavirus and Middle East respiratory coronavirus. The symptoms are similar to influenza (i.e. breathlessness, sore throat and fatigue) and infected cases are isolated and treated. Infection is mild in most cases, but in elderly (>50 years) patients and those with cardiac and respiratory disorders, it may progress to pneumonia, acute respiratory distress syndrome and multi-organ failure. People with strong immunity or those who have developed herd immunity are asymptomatic. The fatality rate ranges from 3% to 4%. Recommended methods for diagnosis of COVID-19 are molecular tests (e.g. polymerase chain reaction) on respiratory secretions, chest scan and common laboratory diagnosis. Currently, treatment is essentially supportive, and the role of antiviral agents is yet to be established as a vaccine is not yet available. This review will focus on epidemiology, symptoms, transmission, pathogenesis, ongoing available treatments and future perspectives of SARS-CoV-2.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Antivirais/uso terapêutico , Biomarcadores/metabolismo , COVID-19 , Infecções por Coronavirus/virologia , Saúde Global , Humanos , Pneumonia Viral/virologia , SARS-CoV-2
5.
Heliyon ; 5(5): e01631, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193112

RESUMO

A highly sensitive fluorescent carbon quantum dots (CDs) was designed to measure the interaction of antidepressant drugs and serum albumins (SA). In present investigation the interaction of bovine serum albumin (BSA) and human serum albumin (HSA) with antidepressant drugs viz. amitryptiline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ) and desipramine hydrochloride (DSP) bioconjugated on CDs have been studied by different spectroscopic techniques i.e., Fluorescence, UV-Visible, Dynamic light scattering (DLS) and FT-IR. The CDs were prepared by one-pot method using glucose and PEG-200. The developed CDs showed blue luminescence under irradiation with ultra-violet. The Stern-Volmer quenching constant (K sv ) indicates the presence of static quenching mechanism. The apparent binding constant K a between antidepressant drugs with complex of SA-CDs have been determined. These results illustrated that CPZ shows strong binding with HSA. As further analyzed by FT-IR spectroscopy and DLS technique, the results suggested induced conformational changes on SA, thus confirming the experimental and theoretical results. Thus, a thorough knowledge of the energetics of drug-protein affinities in presence of CDs as attempted in this work is vital in giving way for appropriate drug delivery.

6.
Food Chem ; 221: 47-53, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979229

RESUMO

A new cloud point extraction (CPE) method for the determination of hexavalent chromium i.e. Cr(VI) in food samples is established with subsequent diffuse reflectance-Fourier transform infrared (DRS-FTIR) analysis. The method demonstrates enrichment of Cr(VI) after its complexation with 1,5-diphenylcarbazide. The reddish-violet complex formed showed λmax at 540nm. Micellar phase separation at cloud point temperature of non-ionic surfactant, Triton X-100 occurred and complex was entrapped in surfactant and analyzed using DRS-FTIR. Under optimized conditions, the limit of detection (LOD) and quantification (LOQ) were 1.22 and 4.02µgmL-1, respectively. Excellent linearity with correlation coefficient value of 0.94 was found for the concentration range of 1-100µgmL-1. At 10µgmL-1 the standard deviation for 7 replicate measurements was found to be 0.11µgmL-1. The method was successfully applied to commercially marketed food stuffs, and good recoveries (81-112%) were obtained by spiking the real samples.


Assuntos
Cromo/análise , Análise de Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromo/química , Cromo/isolamento & purificação , Difenilcarbazida/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA