Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(3): 511-517, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821252

RESUMO

This work presents an optical fiber negative/reflective axicon probe that generates an energy-efficient quasi-Bessel beam (QBB) having a central spot (CS) possessing ∼20% of the QBB power. With silver coating around the axicon, the CS power has been increased by ∼45%. The QBB possesses a large depth of field, ∼400µm, with a micron order spot size as obtained experimentally. The probe has further been explored for common-path optical coherence tomography. The probe length has been optimized to minimize the path length difference between the reference and sample signal. With a divergence angle of just 0.013°, the beam provides a lateral resolution of ∼2.5 to ∼16µm for an axial distance of 0.1 to 1.0 mm. The imaging results are presented for standard samples such as onion and Scotch tape.

2.
J Appl Res Med Aromat Plants ; 26: 100350, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36568438

RESUMO

Ocimum basilicum L. is an antiviral and immunity boosting medicinal plant and culinary herb. Potential use of sweet basils in COVID 19 prevention and management is making its demand rise. This study is aimed at germination potential enhancement of sweet basil seeds. Reported study is evidenced with scientific data of radio-frequency cold plasma treatment using Ar + O2 feed gas. O. basilicum seeds, placed inside the rotating glass bottle, were directly exposed to RF (13.56 MHz) plasma produced in Ar + O2 feed gas. Seed treatment was done using RF source power (60 W, 150 W, 240 W), process pressure (0.2 mbar, 0.4 mbar, 0.6 mbar), and treatment time (5 min, 10 min, 15 min) at different combinations. Results show that, the most efficient treatment provide up to ∼89 % of the germination percentage which is an enhancement by 32.3 % from the control. SEM images revealed slight shrinkage in the seed size with eroded appearance over the seed. Enhancement of lipid peroxidation, show that oxidation of seed coat may propagate internally. Water imbibition analysis, of the treated seeds, was carried out for 2-12 hours. Further analysis of seed weight, on every one hour, after soaking shows enhanced water absorption capability except the treatment at 240 W, 0.6 mbar and 15 min. Plasma treatment enhanced carbohydrate content and protein content which is reported to be due to increased primary metabolism. Whereas, increased activity of secondary metabolism results in the enhancement of enzymatic (catalase) and non-enzymatic antioxidants (proline). Vital growth parameters, such as SVI I and SVI II, got amplified by 37 % and 133 % respectively after treatment. Ameliorative effects of plasma treatment are found highly significant with a positive and significant correlation value (p < 0.01) between germination percentages, SVI I, SVI II, carbohydrate, protein and proline show their interrelationship. Ar + O2 plasma treatment is found to bring forth significant changes in the O. basilicum seeds which eventually enhanced the germination potential and it could be a very promising technology for the medicinal crop.

3.
IEEE Sens J ; 22(14): 13800-13810, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36346093

RESUMO

Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.

4.
Opt Express ; 30(16): 29295-29309, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299107

RESUMO

Deterministic optics fabrication using sub-aperture tools has been vital for manufacturing precision optical surfaces. The fabrication process requires the tool influence function and the tool path to calculate the dwell time that guides the tool to bring surface quality within tight design tolerances. Widely used spiral and raster paths may leave excess waviness from the tool path, and the unavoidable constant removal layer is added to obtain positive dwell time. This waviness can be removed by either using smaller tools sequentially or randomizing the tool path. However, the existing tool-path solutions can hardly adapt to different surface aperture shapes and localized surface errors. Process efficiency and accuracy are also not well considered in tool-path planning. We propose an innovative zonal Random Adaptive Path (RAP) to solve these problems in this study. Firstly, RAP can be flexibly adapted to different surface aperture shapes by introducing part boundary. Secondly, an average threshold strategy is used in the RAP planning to improve efficiency, enabling the surface errors to be selectively corrected. Finally, the threshold is performed in several passes within one processing cycle, each with its RAP, until the desired residual is achieved. The performance of the proposed RAP is studied by comparing it with the conventional tool paths. The results demonstrated that RAP takes the least processing time and achieves the best surface quality, which verifies the effectiveness of RAP in deterministic optics fabrication.

5.
Opt Express ; 28(18): 26733-26749, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906942

RESUMO

Surface errors directly affect the performance of optical systems in terms of contrast and resolution. Surface figure errors at different surface scales are deterministically removed using controlled material removal rate (MRR) during a precision optics fabrication process. We systematically sectioned the wide range of MRR space with systematic parameters and experimentally evaluated and mapped the MRR values using a flexible membrane-polishing tool. We performed numerical analysis with a tool influence function model using a distributed MRR-based Preston's constant evaluation approach. The analysis procedure was applied to a series of experimental data along with the tool influence function models to evaluate removal rates. In order to provide referenceable survey data without entangled information, we designed the experiments using Taguchi's L27 orthogonal array involving five control parameters and statistically analyzed a large number of programmatic experiments. The analysis of variance showed that the most significant parameters for achieving a higher MRR are the spot size and active diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA