Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Bioinformatics ; 25(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166637

RESUMO

BACKGROUND: Chemically induced skin sensitization, or allergic contact dermatitis, is a common occupational and public health issue. Regulatory authorities require an assessment of potential to cause skin sensitization for many chemical products. Defined approaches for skin sensitization (DASS) identify potential chemical skin sensitizers by integrating data from multiple non-animal tests based on human cells, molecular targets, and computational model predictions using standardized data interpretation procedures. While several DASS are internationally accepted by regulatory agencies, the data interpretation procedures vary in logical complexity, and manual application can be time-consuming or prone to error. RESULTS: We developed the DASS App, an open-source web application, to facilitate user application of three regulatory testing strategies for skin sensitization assessment: the Two-out-of-Three (2o3), the Integrated Testing Strategy (ITS), and the Key Event 3/1 Sequential Testing Strategy (KE 3/1 STS) without the need for software downloads or computational expertise. The application supports upload and analysis of user-provided data, includes steps to identify inconsistencies and formatting issues, and provides predictions in a downloadable format. CONCLUSION: This open-access web-based implementation of internationally harmonized regulatory guidelines for an important public health endpoint is designed to support broad user uptake and consistent, reproducible application. The DASS App is freely accessible via https://ntp.niehs.nih.gov/go/952311 and all scripts are available on GitHub ( https://github.com/NIEHS/DASS ).


Assuntos
Dermatite Alérgica de Contato , Aplicativos Móveis , Animais , Humanos , Alternativas aos Testes com Animais/métodos , Pele , Dermatite Alérgica de Contato/etiologia
3.
Front Toxicol ; 4: 987848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408349

RESUMO

Humans are exposed to large numbers of chemicals during their daily activities. To assess and understand potential health impacts of chemical exposure, investigators and regulators need access to reliable toxicity data. In particular, reliable toxicity data for a wide range of chemistries are needed to support development of new approach methodologies (NAMs) such as computational models, which offer increased throughput relative to traditional approaches and reduce or replace animal use. NAMs development and evaluation require chemically diverse data sets that are typically constructed by incorporating results from multiple studies into a single, integrated view; however, integrating data is not always a straightforward task. Primary study sources often vary in the way data are organized and reported. Metadata and information needed to support interoperability and provide context are often lacking, which necessitates literature research on the assay prior to attempting data integration. The Integrated Chemical Environment (ICE) was developed to support the development, evaluation, and application of NAMs. ICE provides curated toxicity data and computational tools to integrate and explore available information, thus facilitating knowledge discovery and interoperability. This paper describes the data curation workflow for integrating data into ICE. Data destined for ICE undergo rigorous harmonization, standardization, and formatting processes using both automated and manual expert-driven approaches. These processes improve the utility of the data for diverse analyses and facilitate application within ICE or a user's external workflow while preserving data integrity and context. ICE data curation provides the structure, reliability, and accessibility needed for data to support chemical assessments.

4.
Toxics ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622624

RESUMO

(1) Background: Disperse Blue 14, Disperse Red 9, Solvent Red 169 and Solvent Yellow 33 have been used to color smoke; however, they have not been comprehensively assessed for their potential health hazards. (2) Methods: To assess the effects of these dyes, zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to 10-55 µM Disperse Red 9, 1-50 µM Solvent Red 169, 7.5-13.5 µM Solvent Yellow 33 or 133-314 µM Disperse Blue 14. Embryos were monitored for adverse effects on gene expression at 48 hpf as well as for mortality, development and behavior at 120 hpf. The dyes were examined for their potential to cross the blood-brain barrier. (3) Results: Solvent Yellow 33 and Disperse Blue 14 impaired development and behavior at all concentrations. Disperse Red 9 impaired behavior at all concentrations and development at all concentrations except for 10 µM. Solvent Red 169 caused no effects. Mortality was only seen in Disperse Blue 14 at 261.5 and 314 µM. Gene expression indicated impacts on neurodevelopment and folate and retinol metabolism as potential mechanisms of toxicity. (4) Conclusions: Smoke dyes have a high potential for causing developmental changes and neurotoxicity and should be examined more closely using comprehensive approaches as used here.

5.
Toxicol Sci ; 188(1): 34-47, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35426934

RESUMO

Regulatory agencies rely upon rodent in vivo acute oral toxicity data to determine hazard categorization, require appropriate precautionary labeling, and perform quantitative risk assessments. As the field of toxicology moves toward animal-free new approach methodologies (NAMs), there is a pressing need to develop a reliable, robust reference data set to characterize the reproducibility and inherent variability in the in vivo acute oral toxicity test method, which would serve to contextualize results and set expectations regarding NAM performance. Such a data set is also needed for training and evaluating computational models. To meet these needs, rat acute oral LD50 data from multiple databases were compiled, curated, and analyzed to characterize variability and reproducibility of results across a set of up to 2441 chemicals with multiple independent study records. Conditional probability analyses reveal that replicate studies only result in the same hazard categorization on average at 60% likelihood. Although we did not have sufficient study metadata to evaluate the impact of specific protocol components (eg, strain, age, or sex of rat, feed used, treatment vehicle, etc.), studies were assumed to follow standard test guidelines. We investigated, but could not attribute, various chemical properties as the sources of variability (ie, chemical structure, physiochemical properties, functional use). Thus, we conclude that inherent biological or protocol variability likely underlies the variance in the results. Based on the observed variability, we were able to quantify a margin of uncertainty of ±0.24 log10 (mg/kg) associated with discrete in vivo rat acute oral LD50 values.


Assuntos
Reprodutibilidade dos Testes , Animais , Bases de Dados Factuais , Probabilidade , Ratos , Medição de Risco/métodos , Testes de Toxicidade Aguda/métodos
6.
Front Cell Infect Microbiol ; 11: 657775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150674

RESUMO

The World Health Organization (WHO) has identified type 2 diabetes (T2DM) as a neglected, important, and re-emerging risk factor for tuberculosis (TB), especially in low and middle-income countries where TB is endemic. In this clinical trial study, oral liposomal glutathione supplementation (L-GSH) or placebo was given to individuals with T2DM to investigate the therapeutic effects of L-GSH supplementation. We report that L-GSH supplementation for 3 months in people with T2DM was able to reduce the levels of oxidative stress in all blood components and prevent depletion of glutathione (GSH) in this population known to be GSH deficient. Additionally, L-GSH supplementation significantly reduced the burden of intracellular mycobacteria within in vitro granulomas generated from peripheral blood mononuclear cells (PBMCs) of T2DM subjects. L-GSH supplementation also increased the levels of Th1-associated cytokines, IFN-γ, TNF-α, and IL-2 and decreased levels of IL-6 and IL-10. In conclusion our studies indicate that oral L-GSH supplementation in individuals with T2DM for three months was able to maintain the levels of GSH, reduce oxidative stress, and diminish mycobacterial burden within in vitro generated granulomas of diabetics. L-GSH supplementation for 3 months in diabetics was also able to modulate the levels of various cytokines.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG , Citocinas , Glutationa , Humanos , Imunidade , Leucócitos Mononucleares
7.
Biomol Concepts ; 12(1): 46-54, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062056

RESUMO

With a disease as widespread and destructive as tuberculosis, more effective drugs and healthcare strategies, in addition to the current antibiotics regimen, are crucial for the enhanced well-being of millions of people suffering from the disease. Host-directed therapy is a new and emerging concept in treating chronic infectious diseases, such as tuberculosis. Repurposing of anti-cancer drugs, such as everolimus, may be an effective way to supplement the standard antibiotic treatment. Individuals with type 2 diabetes are increasingly susceptible to co-morbidities and co-infections including Mycobacterium tuberculosis, the causative agent of tuberculosis. We demonstrated in this study that in vitro everolimus treatment of granulomas from individuals with type 2 diabetes caused significant reduction in the viability of Mycobacterium tuberculosis.Further investigations revealed the effects of everolimus in targeting foamy macrophages, a macrophage phenotype that forms around granulomas, and is characterized by a higher lipid accumulation inside the cells. These foamy macrophages are thought to harbor dormant bacilli, which are potential sources of disease reactivation. Therefore, blocking foamy macrophage formation would help better killing of intracellular bacteria. Here, we report the potential of everolimus treatment to downregulate lipid content within the foamy macrophages of in vitro granulomas, thus leading to a potential decrease in the number of foamy macrophages and a more robust response to Mycobacterium tuberculosis.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Everolimo/farmacologia , Imunidade , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Adolescente , Adulto , Idoso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Feminino , Granuloma/imunologia , Humanos , Imunossupressores/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/microbiologia , Adulto Jovem
8.
Biomol Concepts ; 12(1): 16-26, 2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966361

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains a devastating infectious disease in the world. There has been a daunting increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. T2DM patients are three times more vulnerable to M. tb infection compared to healthy individuals. TB-T2DM coincidence is a challenge for global health control. Despite some progress in the research, M. tb still has unexplored characteristics in successfully evading host defenses. The lengthy duration of treatment, the emergence of multi-drug-resistant strains and extensive-drug-resistant strains of M. tb have made TB treatment very challenging. Previously, we have tested the antimycobacterial effects of everolimus within in vitro granulomas generated from immune cells derived from peripheral blood of healthy subjects. However, the effectiveness of everolimus treatment against mycobacterial infection in individuals with T2DM is unknown. Furthermore, the effectiveness of the combination of in vivo glutathione (GSH) supplementation in individuals with T2DM along with in vitro treatment of isolated immune cells with everolimus against mycobacterial infection has never been tested. Therefore, we postulated that liposomal glutathione (L-GSH) and everolimus would offer great hope for developing adjunctive therapy for mycobacterial infection. L-GSH or placebo was administered to T2DM individuals orally for three months. Study subjects' blood was drawn pre- and post-L-GSH/or placebo supplementation, where Peripheral Blood Mononuclear Cells (PBMCs) were isolated from whole blood to conduct in vitro studies with everolimus. We found that in vitro treatment with everolimus, an mTOR (membrane target of rapamycin) inhibitor, significantly reduced intracellular M. bovis BCG infection alone and in conjunction with L-GSH supplementation. Furthermore, we found L-GSH supplementation coupled with in vitro everolimus treatment produced a greater effect in inhibiting the growth of intracellular Mycobacterium bovis BCG, than with the everolimus treatment alone. We also demonstrated the functions of L-GSH along with in vitro everolimus treatment in modulating the levels of cytokines such as IFN-γ, TNF-α, and IL-2 and IL-6, in favor of improving control of the mycobacterial infection. In summary, in vitro everolimus-treatment alone and in combination with oral L-GSH supplementation for three months in individuals with T2DM, was able to increase the levels of T-helper type 1 (Th1) cytokines IFN-γ, TNF-α, and IL-2 as well as enhance the abilities of granulomas from individuals with T2DM to improve control of a mycobacterial infection.


Assuntos
Vacina BCG/administração & dosagem , Diabetes Mellitus Tipo 2/imunologia , Everolimo/farmacologia , Glutationa/administração & dosagem , Leucócitos Mononucleares/imunologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Administração Oral , Adolescente , Adulto , Idoso , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Granuloma/imunologia , Humanos , Imunidade , Imunossupressores/farmacologia , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/microbiologia , Adulto Jovem
9.
Toxics ; 9(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435144

RESUMO

Solvent Violet 47 (SV47) and Disperse Blue 14 (DB14) are two anthraquinone dyes that were previously used in different formulations for the production of violet-colored smoke. Both dyes have shown potential for toxicity; however, there is no comprehensive understanding of their effects. Zebrafish embryos were exposed to SV47 or DB14 from 6 to 120 h post fertilization (hpf) to assess the dyes' potential adverse effects on developing embryos. The potential ability of both dyes to cross the blood-brain barrier was also assessed. At concentrations between 0.55 and 5.23 mg/L, SV47 showed a dose-dependent increase in mortality, jaw malformation, axis curvature, and edemas. At concentrations between 0.15 and 7.54 mg/L, DB14 did not have this same dose-dependence but had similar morphological outcomes at the highest doses. Nevertheless, while SV47 showed significant mortality from 4.20 mg/L, there was no significant mortality on embryos exposed to DB14. Regardless, decreased locomotor movement was observed at all concentrations of DB14, suggesting an adverse neurodevelopmental effect. Overall, our results showed that at similar concentrations, SV47 and DB14 caused different types of phenotypic effects in zebrafish embryos.

10.
Environ Toxicol Chem ; 40(3): 780-791, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33044770

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a perfluorinated compound used in many industrial and consumer products. It has been linked to a broad range of adverse effects in several species, including zebrafish (Danio rerio). The zebrafish embryo is a widely used vertebrate model to elucidate potential adverse effects of chemicals because it is amenable to medium and high throughput. However, there is limited research on the full extent of the impact the chorion has on those effects. Results from the present study indicate that the presence of the chorion affected the timing and incidence of mortality as well as morphometric endpoints such as spinal curvature and swim bladder inflation in zebrafish embryos exposed to PFOS. Furthermore, removal of the chorion prior to exposure resulted in a lower threshold of sensitivity to PFOS for effects on transcriptional expression within the peroxisome proliferator-activated receptor (PPAR) nuclear signaling pathway. Perturbation of PPAR pathway gene expression can result in disruption of metabolic signaling and regulation, which can adversely affect development, energy availability, and survival. It can be concluded that removal of the chorion has significant effects on the timing and incidence of impacts associated with PFOS exposure, and more research is warranted to fully elucidate the protective role of the chorion and the critical timing of these events. Environ Toxicol Chem 2021;40:780-791. Published 2020. This article is a US Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/toxicidade , Animais , Córion , Embrião não Mamífero , Fluorocarbonos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
11.
Front Immunol ; 11: 1677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973740

RESUMO

Tuberculosis (TB) is currently one of the leading causes of global mortality. Medical non-compliance due to the length of the treatment and antibiotic side effects has led to the emergence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (M. tb) that are difficult to treat. A current therapeutic strategy attempting to circumvent this issue aims to enhance drug delivery to reduce the duration of the antibiotic regimen or dosage of first-line antibiotics. One such agent that may help is cyclic peptide [R4W4], as it has been shown to have antibacterial properties (in combination with tetracycline) against methicillin-resistant Staphylococcus aureus (MRSA) in the past. The objective of this study is to test cyclic peptide [R4W4] both alone and in combination with current first-line antibiotics (either isoniazid or pyrazinamide) to study the effects of inhibition of M. tb inside in vitro human granulomas. Results from our studies indicate that [R4W4] is efficacious in controlling M. tb infection in the granulomas and has enhanced inhibitory effects in the presence of first-line antibiotics.


Assuntos
Antibióticos Antituberculose/farmacologia , Granuloma/tratamento farmacológico , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Pirazinamida/farmacologia , Tuberculose/tratamento farmacológico , Adolescente , Adulto , Idoso , Autofagia/efeitos dos fármacos , Citocinas/metabolismo , Quimioterapia Combinada , Granuloma/metabolismo , Granuloma/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Pessoa de Meia-Idade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Oxidativo , Tuberculose/metabolismo , Tuberculose/microbiologia , Adulto Jovem
12.
J Clin Med ; 9(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781595

RESUMO

Nontuberculous mycobacteria (NTM) are emerging human pathogens, causing a wide range of clinical diseases affecting individuals who are immunocompromised and who have underlying health conditions. NTM are ubiquitous in the environment, with certain species causing opportunistic infection in humans, including Mycobacterium avium and Mycobacterium abscessus. The incidence and prevalence of NTM infections are rising globally, especially in developed countries with declining incidence rates of M. tuberculosis infection. Mycobacterium avium, a slow-growing mycobacterium, is associated with Mycobacterium avium complex (MAC) infections that can cause chronic pulmonary disease, disseminated disease, as well as lymphadenitis. M. abscessus infections are considered one of the most antibiotic-resistant mycobacteria and are associated with pulmonary disease, especially cystic fibrosis, as well as contaminated traumatic skin wounds, postsurgical soft tissue infections, and healthcare-associated infections (HAI). Clinical manifestations of diseases depend on the interaction of the host's immune response and the specific mycobacterial species. This review will give a general overview of the general characteristics, vulnerable populations most at risk, pathogenesis, treatment, and prevention for infections caused by Mycobacterium avium, in the context of MAC, and M. abscessus.

13.
J Clin Med ; 9(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610643

RESUMO

Mycobacterium tuberculosis (M. tb) has been historically and is currently a threat to global public health. First-line antibiotics have been effective but proven to be burdensome as they have many potential adverse side effects. There has been a recent increase in the number of active tuberculosis (TB) cases due to a prevalence of multidrug and extensively drug-resistant strains of M. tb, and an increasing number of highly susceptible people such as those with Type 2 Diabetes (T2DM) and human immunodeficiency virus (HIV) infection. Multidrug-resistant M. tb infection (MDR-TB) is challenging to treat with existing therapeutics, so novel therapeutics and treatment strategies must be developed. Host-Directed Therapy (HDT) has been a potential target mechanism for effective clearance of infection. Host cell autophagy plays an essential role in antibacterial defense. The mammalian target of rapamycin (mTOR) has been negatively correlated with autophagy induction. Everolimus is an mTOR inhibitor that induces autophagy, but with higher water solubility. Therefore, targeting the mTOR pathway has the potential to develop novel and more effective combination drug therapy for TB. This study tested the effect of everolimus, alone and in combination with current first-line antibiotics (isoniazid and pyrazinamide), on the inhibition of M. tb inside in vitro human granulomas. We found that M. tb-infected in vitro granulomas treated with everolimus alone resulted in significantly decreased M. tb burden compared to similar granulomas in the control group. Cells treated with everolimus doses of either 1 nM or 2 nM in conjunction with pyrazinamide (PZA) produced a significant reduction in intracellular M. tb burden. Treatment groups that received everolimus alone in either 1 nM or 2 nM doses experienced a significant reduction in oxidative stress. Additionally, samples treated with 2 nM everolimus alone were observed to have significantly higher levels of autophagy and mTOR inhibition as well. Results from this study indicate that everolimus is efficacious in controlling M. tb infection in the granulomas and has additive effects when combined with the anti-TB drugs, isoniazid and pyrazinamide. This study has shown that everolimus is a promising host-directed therapeutic in the context of in vitro granuloma M. tb infection. Further study is warranted to better characterize these effects.

14.
J Clin Med ; 8(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569759

RESUMO

Mycobacterium tuberculosis (M. tb) is the etiological agent that is responsible for causing tuberculosis (TB). Although every year M. tb infection affects millions of people worldwide, the only vaccine that is currently available is the Bacille Calmette-Guérin (BCG) vaccine. However, the BCG vaccine has varying efficacy. Additionally, the first line antibiotics administered to patients with active TB often cause severe complications and side effects. To improve upon the host response mechanism in containing M. tb infection, our lab has previously shown that the addition of the biological antioxidant glutathione (GSH) has profound antimycobacterial effects. The aim of this study is to understand the additive effects of BCG vaccination and ex-vivo GSH enhancement in improving the immune responses against M. tb in both groups; specifically, their ability to mount an effective immune response against M. tb infection, maintain CD4+ and CD8+ T cells in the granulomas, their response to liposomal glutathione (L-GSH), with varying suboptimal levels of the first line antibiotics isoniazid (INH) and pyrazinamide (PZA), the expressions of programmed death receptor 1 (PD-1), and their ability to induce autophagy. Our results revealed that BCG vaccination, along with GSH enhancement, can prevent the loss of CD4+ and CD8+ T cells in the granulomas and improve the control of M. tb infection by decreasing the expressions of PD-1 and increasing autophagy and production of the cytokines interferon gamma IFN-γ and tumor necrosis factor-α (TNF-α).

15.
Nanotoxicology ; 13(7): 879-893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30938251

RESUMO

Predictive models for the impact of nanomaterials on biological systems remain elusive. Although there is agreement that physicochemical properties (particle diameter, shape, surface chemistry, and core material) influence toxicity, there are limited and often contradictory, data relating structure to toxicity, even for core diameter. Given the importance of size in determining nanoscale properties, we aimed to address this data gap by examining the biological effects of a defined series of gold nanoparticles (AuNPs) on zebrafish embryos. Five AuNPs samples with narrowly spaced core diameters (0.8-5.8 nm) were synthesized and functionalized with positively charged N,N,N-trimethylammonium ethanethiol (TMAT) ligands. We assessed the bioactivity of these NPs in a high-throughput developmental zebrafish assay at eight concentrations (0.5-50 µg/mL) and observed core diameter-dependent bioactivity. The smaller diameter AuNPs were the most toxic when expressing exposures based on an equal mass. However, when expressing exposures based on total surface area, toxicity was independent of the core diameter. When holding the number of nanoparticles per volume constant (at 6.71 × 1013/mL) in the exposure medium across AuNPs diameters, only the 5.8 nm AuNPs exhibited toxic effects. Under these exposure conditions, the uptake of AuNPs in zebrafish was only weakly associated with core diameter, suggesting that differential uptake of TMAT-AuNPs was not responsible for toxicity associated with the 5.8 nm core diameter. Our results indicate that larger NPs may be the most toxic on a per particle basis and highlight the importance of using particle number and surface area, in addition to mass, when evaluating the size-dependent bioactivity of NPs.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Animais , Tamanho da Partícula , Peixe-Zebra
16.
J Clin Med ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754665

RESUMO

Tuberculosis (TB) is a serious infectious disease caused by the pathogen Mycobacterium tuberculosis (Mtb). The current therapy consists of a combination of antibiotics over the course of four months. Current treatment protocols run into problems due to the growing antibiotic resistance of Mtb and poor compliance to the multi-drug-resistant TB treatment protocol. New treatments are being investigated that target host intracellular processes that could be effective in fighting Mtb infections. Autophagy is an intracellular process that is involved in eliminating cellular debris, as well as intracellular pathogens. Mammalian target of rapamycin (mTOR) is an enzyme involved in inhibiting this pathway. Modulation of mTOR and the autophagy cellular machinery are being investigated as potential therapeutic targets for novel Mtb treatments. In this review, we discuss the background of Mtb pathogenesis, including its interaction with the innate and adaptive immune systems, the mTOR and autophagy pathways, the interaction of Mtb with these pathways, and finally, the drug everolimus, which targets these pathways and is a potential novel therapy for TB treatment.

17.
J Clin Med ; 8(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888124

RESUMO

There has been an alarming increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. Uncontrolled T2DM can lead to alterations in the immune system, increasing the risk of susceptibility to infections such as Mycobacterium tuberculosis (M. tb). Altered immune responses could be attributed to factors such as the elevated glucose concentration, leading to the production of Advanced Glycation End products (AGE) and the constant inflammation, associated with T2DM. This production of AGE leads to the generation of reactive oxygen species (ROS), the use of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) via the Polyol pathway, and overall diminished levels of glutathione (GSH) and GSH-producing enzymes in T2DM patients, which alters the cytokine profile and changes the immune responses within these patients. Thus, an understanding of the intricate pathways responsible for the pathogenesis and complications in T2DM, and the development of strategies to enhance the immune system, are both urgently needed to prevent co-infections and co-morbidities in individuals with T2DM.

18.
NanoImpact ; 162019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32133425

RESUMO

Despite the increasing prevalence of engineered nanomaterials (ENMs) in consumer products, their toxicity profiles remain to be elucidated. ENM physicochemical characteristics (PCC) are known to influence ENM behavior, however the mechanisms of these effects have not been quantified. Further confounding the question of how the PCC influence behavior is the inclusion of structural and molecular descriptors in modeling schema that minimize the effects of PCC on the toxicological endpoints. In this work, we analyze ENM physico-chemical measurements that have not previously been studied within a developmental toxicity framework using an embryonic zebrafish model. In testing a panel of diverse ENMs to build a consensus model, we found nonlinear relationships between any singular PCC and bioactivity. By using a machine learning (ML) method to characterize the information content of combinatorial PCC sets, we found that concentration, surface area, shape, and polydispersity can accurately capture the developmental toxicity profile of ENMs with consideration to whole-organism effects.

19.
Proc Biol Sci ; 285(1891)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429298

RESUMO

The behaviour of a nursing dam influences the development, physiology, and behaviour of her offspring. Maternal behaviours can be modulated both by environmental factors, including diet, and by physical or behavioural characteristics of the offspring. In most studies of the effects of the environment on maternal behaviour, F0 dams nurse their own F1 offspring. Because the F1 are indirectly exposed to the environmental stressor in utero in these studies, it is not possible to differentiate between effects on maternal behaviour from direct exposure of the dam and those mediated by changes in the F1 as a consequence of in utero exposure. In this study, we used a mouse model of high-fat (HF) diet feeding, which has been shown to influence maternal behaviours, combined with cross-fostering to discriminate between these effects. We tested whether the diet of the F0 dam or the exposure experienced by the F1 pups in utero is the most significant predictor of maternal behaviour. Neither factor significantly influenced pup retrieval behaviours. However, strikingly, F1in utero exposure was a significant predictor of maternal behaviour in the 15 min immediately following pup retrieval while F0 diet had no discernable effect. Our findings suggest that in utero exposure to HF diet programmes physiological changes in the offspring which influence the maternal behaviours of their dam after birth.


Assuntos
Animais Recém-Nascidos/fisiologia , Dieta Hiperlipídica , Comportamento Materno/fisiologia , Exposição Materna , Camundongos/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Gravidez
20.
BioData Min ; 11: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942350

RESUMO

BACKGROUND: The Toxicological Priority Index (ToxPi) is a method for prioritization and profiling of chemicals that integrates data from diverse sources. However, individual data sources ("assays"), such as in vitro bioassays or in vivo study endpoints, often feature sections of missing data, wherein subsets of chemicals have not been tested in all assays. In order to investigate the effects of missing data and recommend solutions, we designed simulation studies around high-throughput screening data generated by the ToxCast and Tox21 programs on chemicals highlighted by the Agency for Toxic Substances and Disease Registry's (ATSDR) Substance Priority List (SPL), which helps prioritize environmental research and remediation resources. RESULTS: Our simulations explored a wide range of scenarios concerning data (0-80% assay data missing per chemical), modeling (ToxPi models containing from 160-700 different assays), and imputation method (k-Nearest-Neighbor, Max, Mean, Min, Binomial, Local Least Squares, and Singular Value Decomposition). We find that most imputation methods result in significant changes to ToxPi score, except for datasets with a small number of assays. If we consider rank change conditional on these significant changes to ToxPi score, we find that ranks of chemicals in the minimum value imputation, SVD imputation, and kNN imputation sets are more sensitive to the score changes. CONCLUSIONS: We found that the choice of imputation strategy exerted significant influence over both scores and associated ranks, and the most sensitive scenarios were those involving fewer assays plus higher proportions of missing data. By characterizing the effects of missing data and the relative benefit of imputation approaches across real-world data scenarios, we can augment confidence in the robustness of decisions regarding the health and ecological effects of environmental chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA