Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Chem ; 5(1): 134, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36697717

RESUMO

The microscopic understanding of the atomic structure and interaction at carboxylic acid/oxide interfaces is an important step towards tailoring the mechanical properties of nanocomposite materials assembled from metal oxide nanoparticles functionalized by organic molecules. We have studied the adsorption of oleic acid (C17H33COOH) on the most prominent magnetite (001) and (111) crystal facets at room temperature using low energy electron diffraction, surface X-ray diffraction and infrared vibrational spectroscopy complemented with molecular dynamics simulations used to infer specific hydrogen bonding motifs between oleic acid and oleate. Our experimental and theoretical results give evidence that oleic acid adsorbs dissociatively on both facets at lower coverages. At higher coverages, the more pronounced molecular adsorption causes hydrogen bond formation between the carboxylic groups, leading to a more upright orientation of the molecules on the (111) facet in conjunction with the formation of a denser layer, as compared to the (001) facet. This is evidenced by the C=O double bond infrared line shape, in depth molecular dynamics bond angle orientation and hydrogen bond analysis, as well as X-ray reflectivity layer electron density profile determination. Such a higher density can explain the higher mechanical strength of nanocomposite materials based on magnetite nanoparticles with larger (111) facets.

2.
ACS Nano ; 15(8): 13267-13278, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34350766

RESUMO

The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.

3.
J Phys Chem Lett ; 12(15): 3847-3852, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33852797

RESUMO

We report a novel heterogeneous adsorption mechanism of formic acid on the magnetite (111) surface. Our experimental results and density functional theory (DFT) calculations give evidence for dissociative adsorption of formic acid in quasibidentate and chelating geometries. The latter is induced by the presence of iron vacancies at the surface, making oxygen atoms accessible for hydrogen atoms from dissociated formic acid. DFT calculations predict that both adsorption geometries are energetically favorable under our experimental conditions. The calculations prove that the locally observed (√3 × âˆš3)R 30° superstructure consists of three formate molecules in a triangular arrangement, adsorbed predominantly in a chelating geometry. The results show how defects can stabilize alternative adsorption geometries, which is a crucial ingredient for a detailed atomistic understanding of reaction barriers on magnetite and other oxide surfaces, as well as for the stability of carboxylic acid based nanocomposite materials.

4.
IUCrJ ; 8(Pt 1): 124-130, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520248

RESUMO

X-ray photon correlation spectroscopy (XPCS) is a routine technique to study slow dynamics in complex systems at storage-ring sources. Achieving nanosecond time resolution with the conventional XPCS technique is, however, still an experimentally challenging task requiring fast detectors and sufficient photon flux. Here, the result of a nanosecond XPCS study of fast colloidal dynamics is shown by employing an adaptive gain integrating pixel detector (AGIPD) operated at frame rates of the intrinsic pulse structure of the storage ring. Correlation functions from single-pulse speckle patterns with the shortest correlation time of 192 ns have been calculated. These studies provide an important step towards routine fast XPCS studies at storage rings.

5.
Langmuir ; 33(50): 14437-14444, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29192781

RESUMO

We present a route for the functionalization of gold nanoparticles (AuNP) based on phase transfer functionalization in order to optimize the stability and the potential for self-assembly. Depending on the desired size, different ligand exchanges have to be employed: The maximum AuNP size that can be stabilized without concentration loss is 46 nm for polystyrene-based ligands with 5 and 10 kDa. Small particles <12 nm are better stabilized by smaller ligands. We are able to demonstrate that well-ordered close-packed monolayers of 28 nm AuNP covering at least 400 µm2 are possible with a potential for much larger areas. Such monolayers are of great interest for various fundamental experiments in the context of plasmonics and SERS and for sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA