Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(19): 197401, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144919

RESUMO

We investigate polarization-dependent ultrafast photocurrents in the Weyl semimetal TaAs using terahertz (THz) emission spectroscopy. Our results reveal that highly directional, transient photocurrents are generated along the noncentrosymmetric c axis regardless of incident light polarization, while helicity-dependent photocurrents are excited within the ab plane. This is consistent with earlier static photocurrent experiments, and demonstrates on the basis of both the physical constraints imposed by symmetry and the temporal dynamics intrinsic to current generation and decay that optically induced photocurrents in TaAs are inherent to the underlying crystal symmetry of the transition metal monopnictide family of Weyl semimetals.

2.
Sci Rep ; 6: 29143, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377262

RESUMO

Surface magnetoelastic waves are coupled elastic and magnetic excitations that propagate along the surface of a magnetic material. Ultrafast optical techniques allow for a non-contact excitation and detection scheme while providing the ability to measure both elastic and magnetic components individually. Here we describe a simple setup suitable for excitation and time resolved measurements of high frequency magnetoelastic waves, which is based on the transient grating technique. The elastic dynamics are measured by diffracting a probe laser pulse from the long-wavelength spatially periodic structural deformation. Simultaneously, a magnetooptical measurement, either Faraday or Kerr effect, is sensitive to the out-of-plane magnetization component. The correspondence in the response of the two channels probes the resonant interaction between the two degrees of freedom and reveals their intimate coupling. Unraveling the observed dynamics requires a detailed understanding of the spatio-temporal evolution of temperature, magnetization and thermo-elastic strain in the ferromagnet. Numerical solution of thermal diffusion in two dimensions provides the basis on which to understand the sensitivity in the magnetooptic detection.

3.
J Phys Condens Matter ; 28(35): 356002, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27382929

RESUMO

Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30 nm to 250 nm were achieved and characterized using transmission electron diffraction and x-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast x-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time.

4.
J Phys Condens Matter ; 28(19): 194002, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27094012

RESUMO

We measure magnetization and structural dynamics in two intercalant-ordered transition metal dichalcogenides: Fe0.25TaS2 and Mn0.25TaS2. The structurally equivalent materials allow us to probe the effect of orbital angular momentum which is active in Fe0.25TaS2 and absent in Mn0.25TaS2. Interestingly, we find that the magnetooptics dynamics are nearly indistinguishable in these two materials, in contradiction to conventional explanations of a spin-lattice mechanism. We compare our results to other materials where spin-lattice demagnetization has been put forth as a demagnetization channel.

5.
Phys Rev Lett ; 112(15): 157002, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785066

RESUMO

We report femtosecond resonant soft x-ray diffraction measurements of the dynamics of the charge order and of the crystal lattice in nonsuperconducting, stripe-ordered La1.875Ba0.125CuO4. Excitation of the in-plane Cu-O stretching phonon with a midinfrared pulse has been previously shown to induce a transient superconducting state in the closely related compound La1.675Eu0.2Sr0.125CuO4. In La1.875Ba0.125CuO4, we find that the charge stripe order melts promptly on a subpicosecond time scale. Surprisingly, the low temperature tetragonal (LTT) distortion is only weakly reduced, reacting on significantly longer time scales that do not correlate with light-induced superconductivity. This experiment suggests that charge modulations alone, and not the LTT distortion, prevent superconductivity in equilibrium.

6.
Sci Rep ; 4: 3823, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24448171

RESUMO

Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.

7.
J Phys Condens Matter ; 25(11): 116007, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23422011

RESUMO

Time resolved optical spectroscopy is used to elucidate the dynamics of photodoped spin-aligned carriers in the presence of an underlying magnetic lattice in the multiferroic compound TbMnO(3). The transient responses while probing d-d intersite transitions show marked differences along different crystallographic directions, which are discussed in terms of the interplay between the processes of hopping of the photo-injected electrons and the magnetic order in the material.

8.
Phys Rev Lett ; 106(21): 217401, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699341

RESUMO

We used ultrafast resonant soft x-ray diffraction to probe the picosecond dynamics of spin and orbital order in La(0.5)Sr(1.5)MnO(4) after photoexcitation with a femtosecond pulse of 1.5 eV radiation. Complete melting of antiferromagnetic spin order is evidenced by the disappearance of a (1/4,1/4,1/2) diffraction peak. On the other hand, the (1/4,1/4,0) diffraction peak, reflecting orbital order, is only partially reduced. We interpret the results as evidence of destabilization in the short-range exchange pattern with no significant relaxation of the long-range Jahn-Teller distortions. Cluster calculations are used to analyze different possible magnetically ordered states in the long-lived metastable phase. Nonthermal coupling between light and magnetism emerges as a primary aspect of photoinduced phase transitions in manganites.

9.
Science ; 331(6014): 189-91, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21233381

RESUMO

One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.

10.
Phys Rev Lett ; 106(1): 016401, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231756

RESUMO

The transient optical conductivity of photoexcited 1T-TaS2 is determined over a three-order-of-magnitude frequency range. Prompt collapse and recovery of the Mott gap is observed. However, we find important differences between this transient metallic state and that seen across the thermally driven insulator-metal transition. Suppressed low-frequency conductivity, Fano phonon line shapes, and a midinfrared absorption band point to polaronic transport. This is explained by noting that the photoinduced metallic state of 1T-TaS2 is one in which the Mott gap is melted but the lattice retains its low-temperature symmetry, a regime only accessible by photodoping.

11.
Phys Rev Lett ; 101(19): 197404, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19113311

RESUMO

An ultrafast electronic phase transition, associated with melting of orbital order, is driven in La1/2Sr3/2MnO4 by selectively exciting the Mn-O stretching mode with femtosecond pulses at 16 microm wavelength. The energy coupled into this vibration is less than 1% of that necessary to induce the transition thermally. Nonthermal melting of this electronic phase originates from coherent lattice displacements comparable to the static Jahn-Teller distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA