Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Manage ; 280: 111755, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334629

RESUMO

The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM.


Assuntos
Ecossistema , Militares , Biodiversidade , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , North Carolina , Água
2.
Rapid Commun Mass Spectrom ; 34(1): e8569, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472482

RESUMO

RATIONALE: The isotope ratios of nitrogen (15 N/14 N) and oxygen (18 O/16 O) in nitrite (NO2 - ) can be measured by conversion of the nitrite into nitrous oxide (N2 O) with azide, followed by mass spectrometric analysis of N2 O by gas chromatography isotope ratio mass spectrometry (GC/IRMS). While applying this method to brackish samples, we noticed that the N and O isotope ratio measurements of NO2 - are highly sensitive to sample salinity and to the pH at which samples are preserved. METHODS: We investigated the influence of sample salinity and sample preservation pH on the N and O isotope ratios of the N2 O produced from the reaction of NO2 - with azide. The N2 O isotope ratios were measured by GC/IRMS. RESULTS: Under the experimental reaction conditions, the conversion of NO2 - into N2 O was less complete in lower salinity solutions, resulting in respective N and O isotopic offsets of +2.5‰ and -14.0‰ compared with seawater solutions. Differences in salinity were also associated with differences in the fraction of O atoms exchanged between NO2 - and water during the reaction. Similarly, aqueous NO2 - samples preserved at elevated pH values resulted in the incomplete conversion of NO2 - into N2 O by azide, and consequent pH-dependent isotopic offsets, as well as differences in the fraction of O atoms exchanged with water. The addition of sodium chloride to the reaction matrix of samples and standards largely mitigated salinity-dependent isotopic offsets in the N2 O product, and nearly homogenized the fraction of O atom exchange among samples of different salinity. A test of the hypobromite-azide method to measure N isotope ratios of ammonium by conversion into NO2 - then N2 O revealed no influence of sample salinity on the N isotope ratios of the N2 O product. CONCLUSIONS: We outline recommendations to mitigate potential matrix effects among samples and standards, to improve the accuracy of N and O isotope ratios in NO2 - measured with the azide method.

3.
Environ Sci Technol ; 53(3): 1206-1216, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30605314

RESUMO

Measurements of the stable isotope ratios of nitrogen (15N/14N) and oxygen (18O/16O) in nitrate (NO3-) enable identification of sources, dispersal, and fate of natural and contaminant NO3- in aquatic environments. The 18O/16O of NO3- produced by nitrification is often assumed to reflect the proportional contribution of oxygen atom sources, water, and molecular oxygen, in a 2:1 ratio. Culture and seawater incubations, however, indicate oxygen isotopic equilibration between nitrite (NO2-) and water, and kinetic isotope effects for oxygen atom incorporation, which modulate the NO3- 18O/16O produced during nitrification. To investigate the influence of kinetic and equilibrium effects on the isotopic composition of NO3- produced from the nitrification of ammonia (NH3), we incubated streamwater supplemented with ammonium (NH4+) and increments of 18O-enriched water. Resulting NO3- 18O/16O ratios showed (1) a disproportionate sensitivity to the 18O/16O ratio of water, mediated by isotopic equilibration between water and NO2-, as well as (2) kinetic isotope discrimination during O atom incorporation from molecular oxygen and water. Empirically, the NO3- 18O/16O ratios thus produced fortuitously converge near the 18O/16O ratio of water. More elevated NO3- 18O/16O values commonly reported in soils and oxic groundwater may thus derive from processes additional to nitrification, including NO3- reduction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nitratos , Nitrificação , Nitritos , Isótopos de Nitrogênio , Isótopos de Oxigênio
4.
Environ Pollut ; 212: 216-223, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26845369

RESUMO

Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates.


Assuntos
Cloretos/química , Desnitrificação/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Bactérias/efeitos dos fármacos , Florestas , Nitratos , Nitrogênio/química
5.
Environ Sci Technol ; 49(20): 12169-77, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26401911

RESUMO

Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ (15)NO2(-) tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in (28)N2, (29)N2, (30)N2, (15)NO3(-), (15)NO2(-), and (15)NH4(+) with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39-90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2-N L(-1) day(-1). Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers.


Assuntos
Compostos de Amônio/metabolismo , Água Doce/química , Água Subterrânea/química , Nitrogênio/isolamento & purificação , Anaerobiose , Bactérias/genética , Biodegradação Ambiental , Desnitrificação , Água Doce/microbiologia , Gases/análise , Geografia , Água Subterrânea/microbiologia , Massachusetts , Oxirredução , Filogenia , Fatores de Tempo
6.
J Environ Manage ; 150: 206-215, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25500137

RESUMO

Groundwater nitrogen processing was examined in a restored black needlerush (Juncus roemerianus) marsh to assess its potential for removing land-derived nitrogen pollution. Two restoration designs, one initially planted at 50% cover (half density plots) and the other one at 100% cover (full density plots), were compared with non-vegetated controls. The introduction via groundwater of a NO3(-) solution with a conservative tracer (Br(-)) and labeled isotopically ((15)N) allowed calculation of nitrogen removal in the plots following two methods. The first method used changes in the ratio [NOx]:[Br(-)] as the groundwater plume traveled through the plot, and the second method relied on balancing (15)N input with (15)N export. Both methods showed ≈97% of the N from the simulated groundwater plume was removed (i.e. not delivered to the open waters of the adjacent estuary) in vegetated plots and ≈86% was removed in non-vegetated controls. The most dominant routes of N removal from the introduced solution were N2 production and assimilation into macrophyte biomass, which were similar in magnitude for the vegetated plots, whereas N2 production dominated in the unvegetated plots. The majority of N removed from the introduced solution occurred in the first 30 cm the solution traveled in the vegetated treatments. In addition, ambient porewater concentrations of dissolved inorganic nitrogen (DIN) were similar between full and half density plots, but lower than the non-vegetated control (≈8.5× and 7.5×), suggesting full and half density plots removed more DIN than non-vegetated plots. These results suggest that restoring marshes by planting 50% of the area may be a more cost-effective restoration design in terms of mitigating land-derived nutrient pollution than planting 100% of the area since it requires less effort and cost while removing similar quantities of N.


Assuntos
Água Subterrânea/química , Nitrogênio/química , Áreas Alagadas , Conservação dos Recursos Naturais , Golfo do México , Humanos , México , Árvores/crescimento & desenvolvimento
7.
PLoS One ; 9(10): e110335, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329300

RESUMO

We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.


Assuntos
Compostos de Amônio/análise , Técnicas de Química Analítica/normas , Contaminação de Medicamentos , Nitratos/análise , Fixação de Nitrogênio , Isótopos de Nitrogênio/química , Clorófitas/metabolismo , Cromatografia Gasosa , Isótopos de Nitrogênio/farmacocinética
8.
Front Microbiol ; 5: 460, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25232351

RESUMO

Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate respiration pathways in the microbial nitrogen cycle. Diversity and abundance of denitrifying bacteria have been extensively examined in various ecosystems. However, studies on DNRA bacterial diversity are limited, and the linkage between the structure and activity of DNRA communities has yet to be discovered. We examined the composition, diversity, abundance, and activities of DNRA communities at five sites along a salinity gradient in the New River Estuary, North Carolina, USA, a shallow temporal/lagoonal estuarine system. Sediment slurry incubation experiments with (15)N-nitrate were conducted to measure potential DNRA rates, while the abundance of DNRA communities was calculated using quantitative PCR of nrfA genes encoding cytochrome C nitrite reductase, commonly found in DNRA bacteria. A pyrosequencing method targeting nrfA genes was developed using an Ion Torrent sequencer to examine the diversity and composition of DNRA communities within the estuarine sediment community. We found higher levels of nrfA gene abundance and DNRA activities in sediments with higher percent organic content. Pyrosequencing analysis of nrfA genes revealed spatial variation of DNRA communities along the salinity gradient of the New River Estuary. Percent abundance of dominant populations was found to have significant influence on overall activities of DNRA communities. Abundance of dominant DNRA bacteria and organic carbon availability are important regulators of DNRA activities in the eutrophic New River Estuary.

9.
Methods Enzymol ; 496: 63-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21514460

RESUMO

Numerous microbial processes transform nitrogen (N) but three anaerobic respiratory pathways remove fixed N from the environment: denitrification (nitrate conversion to N(2)), anaerobic ammonium oxidation (anammox; ammonium plus nitrite conversion to N(2)), and nitrite dependent methane oxidation (nitrite conversion to N(2)). Nitrification becomes a part of N removal processes as a supplier of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) to anammox and denitrifying bacteria in anoxic water and sediments. It is important to detect and measure anammox and denitrification to understand biogeochemical N cycle and to estimate N removal potential in aquatic ecosystems. Denitrification has been extensively studied in many ecosystems to examine diversity and spatial and temporal dynamics of denitrifying communities as well as to understand its importance in regional and global N cycles. Nitrite dependent methane oxidation was recently discovered as a new pathway of removing fixed N and just started to examine its importance in different ecosystems. Anammox has undergone limited examination, although the number of studies is continuously increasing. There are many questions remaining in order to understand the factors controlling activities and community structures of anammox bacteria in different ecosystems. This chapter reviews both molecular and stable isotope methods to detect and measure anammox in anoxic sediments and water.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Marcação por Isótopo/métodos , Nitratos/análise , Nitrogênio/análise , Compostos de Amônio Quaternário/análise , RNA Ribossômico 16S/análise , Sequência de Aminoácidos , Anaerobiose , Bactérias/metabolismo , Ecossistema , Dados de Sequência Molecular , Nitratos/metabolismo , Nitritos/análise , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Reação em Cadeia da Polimerase/métodos , Compostos de Amônio Quaternário/metabolismo , RNA Ribossômico 16S/genética
10.
Environ Microbiol ; 11(5): 1194-207, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19161435

RESUMO

Anaerobic ammonium oxidation (anammox) specific PCR method was developed to examine diversity and distribution of anammox bacteria in sediments collected from three different sites at Cape Fear River Estuary, North Carolina, where environmental parameters vary greatly over the year. Abundance and activities of anammox bacteria in these sediments were measured using the quantitative PCR (Q-PCR) method and (15)N isotope tracer incubations. Different anammox bacterial communities composed with Brocadia, Kuenenia, Jettenia or Scalindua were found among sites along the estuarine gradient. Seasonal variations of anammox community structures were observed along the estuary based on terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Correlation analysis suggested that salinity variation influenced the diversity and distribution of different anammox bacteria in the estuary. Q-PCR assays of anammox bacteria showed temporal and spatial variations of their abundances, which were highly correlated to salinity variation. (15)N isotope tracer incubations measured different anammox rates and its per cent contribution to total N(2) production among sites. The highest anammox rate was found at the site where Scalindua organisms dominated with the highest anammox bacterial abundance. Thus, we demonstrated a biogeographical distribution of diverse anammox bacteria influenced by salinity, and provide evidence to link anammox abundance and activities in estuarine sediments.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Bactérias/metabolismo , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geografia , Dados de Sequência Molecular , Isótopos de Nitrogênio/metabolismo , North Carolina , Oxirredução , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rios , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA