Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 62(8): 1342-1346, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37021938

RESUMO

Some bacteria survive in nutrient-poor environments and resist killing by antimicrobials by forming spores. The cortex layer of the peptidoglycan cell wall that surrounds mature spores contains a unique modification, muramic-δ-lactam, that is essential for spore germination and outgrowth. Two proteins, the amidase CwlD and the deacetylase PdaA, are required for muramic-δ-lactam synthesis in cells, but their combined ability to generate muramic-δ-lactam has not been directly demonstrated. Here we report an in vitro reconstitution of cortex peptidoglycan biosynthesis, and we show that CwlD and PdaA together are sufficient for muramic-δ-lactam formation. Our method enables characterization of the individual reaction steps, and we show for the first time that PdaA has transamidase activity, catalyzing both the deacetylation of N-acetylmuramic acid and cyclization of the product to form muramic-δ-lactam. This activity is unique among peptidoglycan deacetylases and is notable because it may involve the direct ligation of a carboxylic acid with a primary amine. Our reconstitution products are nearly identical to the cortex peptidoglycan found in spores, and we expect that they will be useful substrates for future studies of enzymes that act on the spore cortex.


Assuntos
Peptidoglicano , Esporos Bacterianos , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Peptidoglicano/química , Bactérias/metabolismo , Parede Celular/química , Lactamas/metabolismo , Proteínas de Bactérias/metabolismo
2.
Biochemistry ; 60(38): 2902-2914, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491035

RESUMO

Citrullination is an enzyme-catalyzed post-translational modification (PTM) that is essential for a host of biological processes, including gene regulation, programmed cell death, and organ development. While this PTM is required for normal cellular functions, aberrant citrullination is a hallmark of autoimmune disorders as well as cancer. Although aberrant citrullination is linked to human pathology, the exact role of citrullination in disease remains poorly characterized, in part because of the challenges associated with identifying the specific arginine residues that are citrullinated. Tandem mass spectrometry is the most precise method for uncovering sites of citrullination; however, due to the small mass shift (+0.984 Da) that results from citrullination, current database search algorithms commonly misannotate spectra, leading to a high number of false-positive assignments. To address this challenge, we developed an automated workflow to rigorously and rapidly mine proteomic data to unambiguously identify the sites of citrullination from complex peptide mixtures. The crux of this streamlined workflow is the ionFinder software program, which classifies citrullination sites with high confidence on the basis of the presence of diagnostic fragment ions. These diagnostic ions include the neutral loss of isocyanic acid, which is a dissociative event that is unique to citrulline residues. Using the ionFinder program, we have mapped the sites of autocitrullination on purified protein arginine deiminases (PAD1-4) and mapped the global citrullinome in a PAD2-overexpressing cell line. The ionFinder algorithm is a highly versatile, user-friendly, and open-source program that is agnostic to the type of instrument and mode of fragmentation that are used.


Assuntos
Citrulinação/fisiologia , Mineração de Dados/métodos , Proteômica/métodos , Algoritmos , Arginina/metabolismo , Citrulinação/genética , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Análise de Dados , Gerenciamento de Dados/métodos , Humanos , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA