Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001563

RESUMO

Despite advancements in treating cutaneous melanoma, patients with acral and mucosal (A/M) melanomas still have limited therapeutic options and poor prognoses. We analyzed 156 melanomas (101 cutaneous, 28 acral, and 27 mucosal) using the Foundation One cancer-gene specific clinical testing platform and identified new, potentially targetable genomic alterations (GAs) in specific anatomic sites of A/M melanomas. Using novel pre-clinical models of A/M melanoma, we demonstrate that several GAs and corresponding oncogenic pathways associated with cutaneous melanomas are similarly targetable in A/M melanomas. Other alterations, including MYC and CRKL amplifications, were unique to A/M melanomas and susceptible to indirect targeting using the BRD4 inhibitor JQ1 or Src/ABL inhibitor dasatinib, respectively. We further identified new, actionable A/M-specific alterations, including an inactivating NF2 fusion in a mucosal melanoma responsive to dasatinib in vivo. Our study highlights new molecular differences between cutaneous and A/M melanomas, and across different anatomic sites within A/M, which may change clinical testing and treatment paradigms for these rare melanomas.

2.
J Neuroinflammation ; 21(1): 165, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937750

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos B , Lesões Encefálicas Traumáticas , Antígenos de Histocompatibilidade Classe II , Camundongos Transgênicos , Animais , Camundongos , Masculino , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos B/efeitos dos fármacos , Meninges/patologia , Meninges/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Presenilina-1/genética , Camundongos Endogâmicos C57BL
3.
Cell Death Dis ; 15(3): 198, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459020

RESUMO

Immune checkpoint inhibitors (ICIs) are now the first-line treatment for patients with advanced melanoma. Despite promising clinical results, many patients fail to respond to these therapies. BH3 mimetics, a novel class of small molecule inhibitors that bind and inhibit anti-apoptotic members of the BCL2 family proteins such as BCL2 or MCL1, have been very successful in treating hematologic malignancies. However, there are limited studies on the immunomodulatory role of the BH3 mimetics. Several factors contribute to ICI resistance including myeloid-derived suppressor cells (MDSCs) that exert immunosuppressive effects through direct and indirect inhibition of antitumor immunity. Thus, targeting MDSCs to enhance antitumor immunity has the potential to enhance the efficacy of ICIs. In this study, we show that the MCL1 inhibitor S64315 reduces melanoma tumor growth in an immune cell-dependent manner in mice. Specifically, S64315 enhances antitumor immunity by reducing MDSC frequency and by promoting the activity of CD8+T cells. Additionally, human MDSCs are 10 times more sensitive to S64315 than cutaneous melanoma lines. Further, we found that a higher expression of MCL1 is associated with poor survival for patients treated with anti-PD-1. Finally, combining S64315 and anti-PD-1 significantly slowed tumor growth compared to either agent alone. Together, this proof-of-concept study demonstrates the potential of combining an MCL1 inhibitor with anti-PD-1 in the treatment of melanoma. It justifies the further development of next generation MCL1 inhibitors to improve efficacy of ICIs in treating malignant melanoma.


Assuntos
Antineoplásicos , Melanoma , Células Supressoras Mieloides , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Células Supressoras Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA