Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1847(11): 1424-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26191650

RESUMO

Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Mitocôndrias/fisiologia , Animais , Autofagia , Restrição Calórica , Cardiolipinas/fisiologia , Dano ao DNA , Metabolismo Energético , Homeostase , Humanos , Mitocôndrias/patologia , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas
2.
Ageing Res Rev ; 23(Pt A): 101-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25702865

RESUMO

Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. These degenerative changes are intimately associated with quality control mechanisms. This review provides a general overview of the clinical and cellular changes which manifest in cardiac aging, and the quality control mechanisms involved in maintaining homeostasis and retarding aging. These mechanisms include autophagy, ubiquitin-mediated turnover, apoptosis, mitochondrial quality control and cardiac matrix homeostasis. Finally, we discuss aging interventions that have been observed to impact cardiac health outcomes. These include caloric restriction, rapamycin, resveratrol, GDF11, mitochondrial antioxidants and cardiolipin-targeted therapeutics. A greater understanding of the quality control mechanisms that promote cardiac homeostasis will help to understand the benefits of these interventions, and hopefully lead to further improved therapeutic modalities.


Assuntos
Envelhecimento/fisiologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Reparo do DNA , Dieta , Coração/efeitos dos fármacos , Humanos , Controle de Qualidade
3.
Aging Cell ; 12(6): 1050-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23837470

RESUMO

Dietary restriction (DR) increases lifespan and attenuates age-related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large-scale effort to define molecular mechanisms that underlie genotype-specific responses to DR. The effect of DR on lifespan was determined for 166 single gene deletion strains in Saccharomyces cerevisiae. Resulting changes in mean lifespan ranged from a reduction of 79% to an increase of 103%. Vacuolar pH homeostasis, superoxide dismutase activity, and mitochondrial proteostasis were found to be strong determinants of the response to DR. Proteomic analysis of cells deficient in prohibitins revealed induction of a mitochondrial unfolded protein response (mtUPR), which has not previously been described in yeast. Mitochondrial proteotoxic stress in prohibitin mutants was suppressed by DR via reduced cytoplasmic mRNA translation. A similar relationship between prohibitins, the mtUPR, and longevity was also observed in Caenorhabditis elegans. These observations define conserved molecular processes that underlie genotype-dependent effects of DR that may be important modulators of DR in higher organisms.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Restrição Calórica , Dieta , Saccharomyces cerevisiae/genética , Aerobiose , Animais , Autofagia , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Genótipo , Proibitinas , Saccharomyces cerevisiae/citologia , Resposta a Proteínas não Dobradas/genética
4.
FEBS J ; 280(10): 2332-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23421805

RESUMO

Similar to most proteinases, matrix metalloproteinases (MMP) do not recognize a consensus cleavage site. Thus, it is not surprising that, in a defined in vitro reaction, most MMPs can act on a wide range of proteins, including many extracellular matrix proteins. However, the findings obtained from in vivo studies with genetic models have demonstrated that individual MMPs act on just a few extracellular protein substrates, typically not matrix proteins. The limited, precise functions of an MMP imply that mechanisms have evolved to control the specificity of proteinase:substrate interactions. We discuss the possibility that interactions with the glycosaminoglycan chains of proteoglycans may function as allosteric regulators or accessory factors directing MMP catalysis to specific substrates. We propose that understanding how the activity of specific MMPs is confined to discreet compartments and targeted to defined substrates via interactions with other macromolecules may provide a means of blocking potentially deleterious MMP-mediated processes at the same time as sparing any beneficial functions.


Assuntos
Glicosaminoglicanos/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Mapeamento de Interação de Proteínas , Regulação Alostérica , Animais , Domínio Catalítico , Sequência Consenso , Ativação Enzimática , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Especificidade por Substrato , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA