Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Orphanet J Rare Dis ; 16(1): 473, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749770

RESUMO

BACKGROUND: Wound management is a critical factor when treating patients with the inherited skin fragility disease dystrophic epidermolysis bullosa (DEB). Due to genetic defects in structural proteins, skin and mucous epithelia are prone to blistering and chronic wounding upon minor trauma. Furthermore, these wounds are commonly associated with excessive pruritus and predispose to the development of life-threatening squamous cell carcinomas, underscoring the unmet need for new therapeutic options to improve wound healing in this patient cohort. Vitamin D3 is acknowledged to play an important role in wound healing by modulating different cellular processes that impact epidermal homeostasis and immune responses. In this study, we evaluate the safety and efficacy of low-dose calcipotriol, a vitamin D3 analogue, in promoting wound healing and reducing itch and pain in patients with DEB. METHODS: Eligible DEB patients, aged ≥ 6 years and with a known mutation in the COL7A1 gene, were recruited to a placebo-controlled, randomized, double blind, cross-over phase II monocentric clinical trial. Patients were required to have at least two wounds with a minimum size of 6 cm2 per wound. The primary objective was to evaluate efficacy of daily topical application of a 0.05 µg/g calcipotriol ointment in reducing wound size within a 4-week treatment regimen. Secondary objectives were to assess safety, as well as the impact of treatment on pruritus, pain, and bacterial wound colonization in these patients. RESULTS: Six patients completed the clinical trial and were included into the final analysis. Topical low-dose calcipotriol treatment led to a significant reduction in wound area at day 14 compared to placebo (88.4% vs. 65.5%, P < 0.05). Patients also reported a significant reduction of pruritus with calcipotriol ointment compared to placebo over the entire course of the treatment as shown by itch scores of 3.16 vs 4.83 (P < 0.05) and 1.83 vs 5.52 (P < 0.0001) at days 14 and 28, respectively. Treatment with low-dose calcipotriol did not affect serum calcium levels and improved the species richness of the wound microbiome, albeit with no statistical significance. CONCLUSIONS: Our results show that topical treatment with low-dose calcipotriol can accelerate wound closure and significantly reduces itch, and can be considered a safe and readily-available option to improve local wound care in DEB patients. Trial Registration EudraCT: 2016-001,967-35. Registered 28 June 2016, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001967-35/AT.


Assuntos
Epidermólise Bolhosa Distrófica , Calcitriol/análogos & derivados , Colágeno Tipo VII , Método Duplo-Cego , Humanos , Pomadas , Dor/tratamento farmacológico , Dor/etiologia , Prurido/tratamento farmacológico , Prurido/etiologia , Cicatrização
3.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675067

RESUMO

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/imunologia , Memória Imunológica/imunologia , Vírus do Sarampo/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
4.
Sci Rep ; 10(1): 15064, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934247

RESUMO

Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.


Assuntos
Bandagens , Separação Celular , Epidermólise Bolhosa , Granulócitos , Linfócitos T , Cicatrização , Doença Aguda , Adulto , Doença Crônica , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa/terapia , Granulócitos/metabolismo , Granulócitos/patologia , Humanos , Masculino , Linfócitos T/metabolismo , Linfócitos T/patologia
5.
Cells ; 9(2)2020 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991811

RESUMO

: Introduction: Antibody treatment with anti-thymocyte globulin (ATG) has been shown to be cardioprotective. We aimed to evaluate which single anti-T-cell epitope antibody alters chemokine expression at a level similar to ATG and identified CD3, which is a T-cell co-receptor mediating T-cell activation. Based on these results, the effects of anti-CD3 antibody treatment on angiogenesis and cardioprotection were tested in vitro and in vivo. METHODS: Concentrations of IL-8 and MCP-1 in supernatants of human peripheral blood mononuclear cell (PBMC) cultures following distinct antibody treatments were evaluated by Enzyme-linked Immunosorbent Assay (ELISA). In vivo, anti-CD3 antibodies or vehicle were injected intravenously in rats subjected to acute myocardial infarction (AMI). Chemotaxis and angiogenesis were evaluated using tube and migration assays. Intracellular pathways were assessed using Western blot. Extracellular vesicles (EVs) were quantitatively evaluated using fluorescence-activated cell scanning, exoELISA, and nanoparticle tracking analysis. Also, microRNA profiles were determined by next-generation sequencing. RESULTS: Only PBMC stimulation with anti-CD3 antibody led to IL-8 and MCP-1 changes in secretion, similar to ATG. In a rat model of AMI, systemic treatment with an anti-CD3 antibody markedly reduced infarct scar size (27.8% (Inter-quartile range; IQR 16.2-34.9) vs. 12.6% (IQR 8.3-27.2); p < 0.01). The secretomes of anti-CD3 treated PBMC neither induced cardioprotective pathways in cardiomyocytes nor pro-angiogenic mechanisms in human umbilical vein endothelial cell (HUVECs) in vitro. While EVs quantities remained unchanged, PBMC incubation with an anti-CD3 antibody led to alterations in EVs miRNA expression. CONCLUSION: Treatment with an anti-CD3 antibody led to decreased scar size in a rat model of AMI. Whereas cardioprotective and pro-angiogenetic pathways were unaltered by anti-CD3 treatment, qualitative changes in the EVs miRNA expression could be observed, which might be causal for the observed cardioprotective phenotype. We provide evidence that EVs are a potential cardioprotective treatment target. Our findings will also provide the basis for a more detailed analysis of putatively relevant miRNA candidates.


Assuntos
Complexo CD3/imunologia , Cicatriz/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , MicroRNAs/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/imunologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Soro Antilinfocitário/imunologia , Soro Antilinfocitário/uso terapêutico , Cardiotônicos/imunologia , Quimiocina CCL2/metabolismo , Cicatriz/imunologia , Cicatriz/prevenção & controle , Modelos Animais de Doenças , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Exossomos/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , MicroRNAs/genética , Neovascularização Fisiológica/imunologia , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Sci Rep ; 8(1): 13430, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194425

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) patients suffer from chronic and repeatedly infected wounds predisposing them to the development of aggressive and life-threatening skin cancer in these areas. Vitamin D3 is an often neglected but critical factor for wound healing. Intact skin possesses the entire enzymatic machinery required to produce active 1-alpha,25-dihydroxyvitamin D3 (calcitriol), underscoring its significance to proper skin function. Injury enhances calcitriol production, inducing the expression of calcitriol target genes including the antimicrobial peptide cathelicidin (hCAP18), an essential component of the innate immune system and an important wound healing factor. We found significantly reduced hCAP18 expression in a subset of RDEB keratinocytes which could be restored by calcipotriol treatment. Reduced scratch closure in RDEB cell monolayers was enhanced up to 2-fold by calcipotriol treatment, and the secretome of calcipotriol-treated cells additionally showed increased antimicrobial activity. Calcipotriol exhibited anti-neoplastic effects, suppressing the clonogenicity and proliferation of RDEB tumor cells. The combined wound healing, anti-microbial, and anti-neoplastic effects indicate that calcipotriol may represent a vital therapeutic option for RDEB patients which we could demonstrate in a single-patient observation study.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Fármacos Dermatológicos/farmacologia , Epidermólise Bolhosa/metabolismo , Queratinócitos/efeitos dos fármacos , Cicatrização , Idoso , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Células Cultivadas , Epidermólise Bolhosa/patologia , Humanos , Queratinócitos/metabolismo , Masculino , Catelicidinas
7.
Invest Ophthalmol Vis Sci ; 55(1): 396-403, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24327617

RESUMO

PURPOSE: Previous experiments have shown that arginine-vasopressin (AVP) reduces intraocular pressure (IOP) dose-dependently. The present study investigated the relationships between IOP, ciliary blood flow (CilBF), and aqueous flow (AqF) responses to AVP in anesthetized rabbits. METHODS: CilBF was measured by laser Doppler flowmetry and AqF by fluorophotometry. Mean arterial pressure (MAP) and IOP were monitored continuously and simultaneously. Perfusion pressure (PP) was varied mechanically. Four experimental protocols were performed: the dose-response (n = 11) and the pressure-flow relationship (n = 8) for CilBF and the effects on CilBF, and AqF at low (0.08 ng/kg/min; n = 14) and high AVP infusion rates (1.33 ng/kg/min; n = 12). RESULTS: AVP decreased CilBF and IOP dose-dependently. At the low AVP infusion rate, AqF was reduced by 21.48% ± 2.52% without changing CilBF significantly. The high AVP infusion rate caused a 24.49% ± 3.53% decrease of AqF and a significant reduction in CilBF (35.60% ± 3.58%). IOP was reduced by 9.56% ± 2.35% at low and by 41.02% ± 3.19% at high AVP infusion rates. Based on the Goldmann equation, the decrease of AqF at the low AVP infusion rate accounted for 77.1% of the IOP reduction, whereas at the high AVP infusion rate, decreased AqF accounted for 28.4% of the IOP decline. CONCLUSIONS: The results indicate that AVP can modulate IOP by different dose-dependent physiological mechanisms. The shifts of the CilBF-AqF relationship suggest that the reduction of AqF by the low AVP infusion rate is mainly provoked by inhibiting secretory processes in the ciliary epithelium. In contrast, at the high AVP infusion rate, the AqF reduction is caused by either reduced CilBF or more likely by a combined effect of reduced CilBF and secretory inhibition.


Assuntos
Humor Aquoso/fisiologia , Corpo Ciliar/irrigação sanguínea , Glaucoma/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Vasopressinas/administração & dosagem , Animais , Humor Aquoso/efeitos dos fármacos , Corpo Ciliar/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fluorofotometria , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Infusões Intravenosas , Fluxometria por Laser-Doppler , Masculino , Coelhos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasoconstritores/administração & dosagem , Vasoconstritores/farmacocinética , Vasopressinas/farmacocinética
8.
Invest Ophthalmol Vis Sci ; 52(10): 7134-40, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21791588

RESUMO

PURPOSE: To investigate the effects of arginine-vasopressin (AVP) on intraocular pressure (IOP), orbital venous pressure (OVP), and choroidal blood flow (ChorBF) regulation in anesthetized rabbits. METHODS: Mean arterial pressure (MAP), IOP, and OVP were measured by direct cannulation of the central ear artery, the vitreous, and the orbital venous sinus, respectively. Laser Doppler flowmetry was used to record ChorBF. To change the perfusion pressure (PP), MAP was manipulated mechanically with occluders around the aorta and vena cava. In the first group of animals (n = 11) the dose-response relationship was measured. In the second group of animals (n = 8) pressure-flow relationships were determined at baseline and in response to intravenous application of a low (0.08 ng/kg/min) and a high (1.33 ng/kg/min) infusion rate of AVP. RESULTS: AVP caused a dose-dependent increase of MAP and choroidal vascular resistance (ChorR), whereas IOP, OVP, ChorBF, and heart rate (HR) were decreased. In contrast to the high infusion rate, the low infusion rate of AVP had no effect on baseline ChorBF. However, the pressure-flow relationship was shifted downward significantly by both infusion rates at PP below baseline. CONCLUSIONS: AVP reduces IOP and OVP significantly and is a potent vasoconstrictor in the choroidal vascular bed. In the choroid, the effect of AVP is not only dose-dependent, but also PP-dependent, which is indicated by the reduced perfusion relative to control with low-dosed AVP at low PP.


Assuntos
Arginina Vasopressina/farmacologia , Corioide/irrigação sanguínea , Pressão Intraocular/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Infusões Intravenosas , Fluxometria por Laser-Doppler , Masculino , Órbita/irrigação sanguínea , Coelhos , Pressão Venosa/efeitos dos fármacos
9.
Invest Ophthalmol Vis Sci ; 50(5): 2301-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19182250

RESUMO

PURPOSE: To determine the effects of topical dorzolamide (a carbonic anhydrase inhibitor) on choroidal and ciliary blood flow and the relationship between ciliary blood flow and aqueous flow. METHODS: The experiments were performed in four groups of pentobarbital-anesthetized rabbits treated with topical dorzolamide (2%, 50 microL). In all groups, intraocular pressure (IOP) and mean arterial pressure (MAP) at the eye level were measured continuously by direct cannulation. In group 1, aqueous flow was measured by fluorophotometry before and after dorzolamide treatment. In group 2, aqueous flow was measured after dorzolamide at normal MAP and while MAP was held constant at 80, 55, or 40 mm Hg with occluders on the aorta and vena cava. In group 3, the same MAP levels were used, and ciliary blood flow was measured transsclerally by laser Doppler flowmetry (LDF). In group 4, choroidal blood flow was measured by LDF with the probe tip positioned in the vitreous over the posterior pole during ramp increases and decreases in MAP before and after dorzolamide. RESULTS: Dorzolamide lowered IOP by 19% (P < 0.01) and aqueous flow by 17% (P < 0.01), and increased ciliary blood flow by 18% (P < 0.01), which was associated with a significant reduction in ciliary vasculature resistance (-7%, P < 0.01). Dorzolamide shifted the relationship between ciliary blood flow and aqueous flow downward relative to the previously determined control relationship in the rabbit. Dorzolamide did not alter choroidal blood flow, choroidal vascular resistance, or the choroidal pressure flow relationship. CONCLUSIONS: Acute topical dorzolamide is a ciliary vasodilator and has a direct inhibitory effect on aqueous production, but it does not have a detectable effect on choroidal hemodynamics at the posterior pole in the rabbit.


Assuntos
Humor Aquoso/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Corioide/irrigação sanguínea , Corpo Ciliar/irrigação sanguínea , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Vasodilatação/efeitos dos fármacos , Administração Tópica , Animais , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Inibidores da Anidrase Carbônica/administração & dosagem , Feminino , Fluorofotometria , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Fluxometria por Laser-Doppler , Masculino , Coelhos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA