Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920958

RESUMO

Wound dressing production represents an important segment in the biomedical healthcare field, but finding a simple and eco-friendly method that combines a natural compound and a biocompatible dressing production for biomedical application is still a challenge. Therefore, the aim of this study is to develop wound healing dressings that are environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. Hydrogel wound healing dressings were prepared from polyvinyl alcohol/carboxymethyl cellulose and sericin using the freeze-thawing method as a crosslinking method. The morphological characterization was carried out by scanning electron microscopy (SEM), whereas the mechanical analysis was carried out by dynamic mechanical analysis (DMA) to test the tensile strength and compression properties. Then, the healing property of the wound dressing material was tested by in vitro and ex vivo tests. The results show a three-dimensional microporous structure with no cytotoxicity, excellent stretchability with compressive properties similar to those of human skin, and excellent healing properties. The proposed hydrogel dressing was tested in vitro with HaCaT keratinocytes and ex vivo with epidermal tissues, demonstrating an effective advantage on wound healing acceleration. Accordingly, this study was successful in developing wound healing dressings using natural agents and a simple and green crosslinking method.

2.
ACS Appl Mater Interfaces ; 12(16): 18660-18666, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32216304

RESUMO

There is huge research activity in the development of flexible and biocompatible piezoelectric materials for next-generation compliant micro electro-mechanical systems (MEMS) transducers to be exploited in wearable devices and implants. This work reports for the first time on the development of flexible ScxAl(1-x)N films deposited by sputtering technique onto polyimide substrates, assessing their piezoelectricity and biocompatibility. Flexible ScxAl(1-x)N films have been analyzed in terms of morphological, structural, and piezoelectric properties. ScxAl(1-x)N layer exhibits a good surface roughness of 4.40 nm and moderate piezoelectricity with an extracted effective piezoelectric coefficient (d33eff) value of 1.87 ± 0.06 pm/V, in good agreement with the diffraction pattern analysis results. Cell viability assay, performed to study the interaction of the ScxAl(1-x)N films with human cell lines, shows that this material does not have significant effects on tested cells. Furthermore, the ScxAl(1-x)N layer, integrated onto a flexible device and analyzed by bending/unbending measurements, shows a peak-to-peak open-circuit voltage (VOC) of 0.32 V and a short-circuit current (ISC) of 0.27 µA, with a generated power of 19.28 nW under optimal resistive load, thus demonstrating the potential of flexible ScxAl(1-x)N films as active layers for next-generation wearable/implantable piezoelectrics.


Assuntos
Compostos de Alumínio/química , Materiais Biocompatíveis/química , Sistemas Microeletromecânicos , Escândio/química , Transdutores , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Equipamento , Humanos , Nanotecnologia , Maleabilidade , Dispositivos Eletrônicos Vestíveis
3.
Analyst ; 137(22): 5260-4, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23012692

RESUMO

The integration of a polycrystalline material such as aluminum nitride (AlN) on a flexible substrate allows the realization of elastic tactile sensors showing both piezoelectricity and significant capacitive variation under normal stress. The application of a normal stress on AlN generates deformation of the flexible substrate on which AlN is grown, which results in strain gradient of the polycrystalline layer. The strain gradient is responsible for an additional polarization described in the literature as the flexoelectric effect, leading to an enhancement of the transduction properties of the material. The flexible AlN is synthesized by sputtering deposition on kapton HN (poly 4,4'-oxydiphenyl pyromellitimide) in a highly oriented crystal structure. High orientation is demonstrated by X-ray diffraction spectra (FWHM = 0.55° of AlN (0002)) and HRTEM. The piezoelectric coefficient d(33) and stress sensitive capacitance are 4.7 ± 0.5 pm V(-1) and 4 × 10(-3) pF kPa(-1), respectively. The parallel plate capacitors realized for tactile sensing present a typical dome shape, very elastic under applied stress and sensitive in the pressure range of interest for robotic applications (10 kPa to 1 MPa). The flexibility of the device finalized for tactile applications is assessed by measuring the sensor capacitance before and after shaping the sensing foil on curved surfaces for 1 hour. Bending does not affect sensor's operation, which exhibits an electrical Q factor as high as 210, regardless of the bending, and a maximum capacitance shift of 0.02%.


Assuntos
Compostos de Alumínio/química , Tato , Capacitância Elétrica , Imidas/química , Pressão , Semicondutores , Difração de Raios X
4.
Nanotechnology ; 23(16): 165202, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22469563

RESUMO

III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.


Assuntos
Arsenicais/química , Cristalização/métodos , Índio/química , Modelos Químicos , Pontos Quânticos , Simulação por Computador , Condutividade Elétrica , Teste de Materiais , Conformação Molecular , Tamanho da Partícula
5.
Opt Express ; 17(8): 6258-67, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365451

RESUMO

We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.


Assuntos
Desenho Assistido por Computador , Lasers Semicondutores , Pontos Quânticos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Opt Lett ; 32(22): 3245-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18026268

RESUMO

Fabry-Perot InAs quantum-dot lasers grown on GaAs substrates are mutually coupled with a delay of several nanoseconds. Stable phase-locked output with narrow linewidth is obtained when the frequency detuning between the two lasers is less than 4 GHz. This simple locking scheme could find application in a variety of photonics applications.

7.
Opt Lett ; 31(21): 3107-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041650

RESUMO

We have analyzed pulse width and timing jitter in passively mode-locked two-section InAs quantum-dot lasers emitting at 1310 nm and have identified two distinct, extensive mode-locked regions with robust short pulses and low timing jitter. A record combination of 2 ps pulses and 25 fs/cycle timing jitter (500 fs, 1-100 MHz), with 1 mW average output power per facet, is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA