Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Funct Biomater ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535265

RESUMO

In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5-2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.

2.
J Funct Biomater ; 15(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535266

RESUMO

The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms.

3.
Beilstein J Nanotechnol ; 14: 165-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761674

RESUMO

Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432356

RESUMO

Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.

5.
Materials (Basel) ; 15(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36233866

RESUMO

Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with a diameter of 19-89 nm and optical band gap of 3.23-4.73 eV, featuring oxygen-containing, amino, and amide functional groups. Dots showed antioxidative activity; they quenched •OH at a concentration of 10 µg·mL-1, scavenged DPPH• radicals even at 5 µg·mL-1, and caused discoloration of KMnO4 at 30 µg·mL-1. Under light irradiation, dots were able to produce singlet oxygen, which remained stable for 10 min. Photoinduced effects by GQDs were studied on several bacterial strains (Listeria monocytogenes, Bacillus cereus, clinical strains of Streptococcus mutans, S. pyogenes, and S. sangunis, Pseudomonas aeruginosa, and one yeast strain Candida albicans) but antibacterial effects were not noticed.

6.
J Biomed Mater Res B Appl Biomater ; 110(8): 1796-1805, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191591

RESUMO

The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.


Assuntos
Grafite , Staphylococcus aureus Resistente à Meticilina , Pontos Quânticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Celulose/farmacologia , Escherichia coli , Grafite/farmacologia , Humanos , Hidrogéis/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização
7.
Free Radic Biol Med ; 177: 167-180, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678419

RESUMO

We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.


Assuntos
Grafite , Neuroblastoma , Pontos Quânticos , Antioxidantes/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo
8.
Int J Biol Macromol ; 191: 315-323, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34562533

RESUMO

Since the pathogenic bacteria biofilms are involved in 70% of chronic infections and their resistance to antibiotics is increased, the research in this field requires new healing agents. New composite hydrogels were designed as potential chronic wound dressings composed of bacterial cellulose (BC) with chitosan polymer (Chi) - BC-Chi and chitosan nanoparticles (nChiD) - BC-nChiD. nChiD were obtained by gamma irradiation at doses: 20, 40 and 60 kGy. Physical and chemical analyses showed incorporation of Chi and encapsulation of nChiD into BC. The BC-Chi has the highest average surface roughness. BC-nChiD hydrogels show an irradiated dose-dependent increase of average surface roughness. New composite hydrogels are biocompatible with excellent anti-biofilm potential with up to 90% reduction of viable biofilm and up to 65% reduction of biofilm height. The BC-nChiD showed better dressing characteristics: higher porosity, higher wound fluid absorption and faster migration of cells (in vitro healing). All obtained results confirmed both composite hydrogels as promising chronic wound healing agents.


Assuntos
Antibacterianos/química , Curativos Hidrocoloides , Celulose/química , Quitosana/química , Nanogéis/química , Adulto , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Células Cultivadas , Humanos
9.
Mater Sci Eng C Mater Biol Appl ; 122: 111925, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641918

RESUMO

Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment.


Assuntos
Antioxidantes , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Celulose , Hidrogéis , Cicatrização
10.
RSC Adv ; 11(15): 8559-8568, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423394

RESUMO

Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereas in vitro release test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.

12.
Mater Sci Eng C Mater Biol Appl ; 109: 110539, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229000

RESUMO

Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV-Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 µg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration.


Assuntos
Grafite , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pontos Quânticos , Oxigênio Singlete/química , Tioureia , Grafite/química , Grafite/farmacologia , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Tioureia/química , Tioureia/farmacologia
13.
J Photochem Photobiol B ; 200: 111647, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648133

RESUMO

Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV-Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.


Assuntos
Antioxidantes/química , Grafite/química , Oxidantes/química , Carbono/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Grafite/toxicidade , Humanos , Microscopia Confocal , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
14.
Photodiagnosis Photodyn Ther ; 26: 342-349, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31022579

RESUMO

Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation.


Assuntos
Carbono/farmacologia , Dimetilpolisiloxanos/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Nanocompostos/uso terapêutico , Fotoquimioterapia/métodos , Pontos Quânticos/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Animais , Camundongos , Oxigênio Singlete/metabolismo , Propriedades de Superfície
15.
Neuropharmacology ; 146: 95-108, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471296

RESUMO

We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0-32), while the protection was less pronounced if the treatment was limited to the induction (day 0-7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response.


Assuntos
Encefalomielite/imunologia , Encefalomielite/terapia , Grafite/uso terapêutico , Pontos Quânticos/uso terapêutico , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Citocinas/biossíntese , Citocinas/efeitos dos fármacos , Doenças Desmielinizantes , Encefalomielite Autoimune Experimental , Inflamação , Injeções Intraperitoneais , Linfonodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Medula Espinal
16.
ACS Biomater Sci Eng ; 4(12): 3983-3993, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33418799

RESUMO

Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.

17.
RSC Adv ; 8(55): 31337-31347, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548242

RESUMO

Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.

18.
Biomaterials ; 146: 13-28, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28892752

RESUMO

Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physico-chemical and biological properties, making them attractive for application in theranostics. However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4+CD25highFoxp3+ regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-κB in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Grafite/química , Grafite/farmacologia , Pontos Quânticos/química , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Immunoblotting , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/efeitos dos fármacos
19.
J Colloid Interface Sci ; 500: 30-43, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28395161

RESUMO

Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components.

20.
Biomed Microdevices ; 18(2): 37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27106025

RESUMO

Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 µg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luz , Nanopartículas/química , Solventes/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Curcumina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA