Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sci Rep ; 14(1): 7119, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531918

RESUMO

The coffee leaf miner (Leucoptera coffeella) is one of the major pests of coffee crops in the neotropical regions, and causes major economic losses. Few molecular data are available to identify this pest and advances in the knowledge of the genome of L. coffeella will contribute to improving pest identification and also clarify taxonomy of this microlepidoptera. L. coffeella DNA was extracted and sequenced using PacBio HiFi technology. Here we report the complete L. coffeella circular mitochondrial genome (16,407 bp) assembled using Aladin software. We found a total of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T rich-region and a D-loop. The L. coffeella mitochondrial gene organization is highly conserved with similarities to lepidopteran mitochondrial gene rearrangements (trnM-trnI-trnQ). We concatenated the 13 PCG to construct a phylogenetic tree and inferred the relationship between L. coffeella and other lepidopteran species. L. coffeella is found in the Lyonetiidae clade together with L. malifoliella and Lyonetia clerkella, both leaf miners. Interestingly, this clade is assigned in the Yponomeutoidea superfamily together with Gracillariidae, and both superfamilies displayed species with leaf-mining feeding habits.


Assuntos
Genoma Mitocondrial , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Filogenia , Mariposas/genética , Sequência de Bases , Genes Mitocondriais , RNA de Transferência/genética
2.
Microb Ecol ; 86(4): 2515-2526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392204

RESUMO

Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/química , Reação em Cadeia da Polimerase em Tempo Real , Toxinas de Bacillus thuringiensis , Brasil , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Insetos , Variação Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química
3.
Antonie Van Leeuwenhoek ; 116(7): 599-614, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178245

RESUMO

The usage of microorganisms as biocontrol agents and biofertilizers has been recommended and recognized as an ecologically correct alternative to maintaining the productivity and safety of crops. Thus, the objectives of this work were to characterize twelve strains belonging to Invertebrate Bacteria Collection of Embrapa Genetic Resources and Biotechnology by molecular, morphological, and biochemical methods and to evaluate the pathogenicity of these strains against pests and diseases of agricultural interest. The morphological characteristic of the strains was performed according to the principles of Bergy's Manual of Systematic Bacteriology. The genomes of the 12 strains were sequenced in Macrogen, Inc. (Seoul, Korea) using the HiSeq2000 and GS-FLX Plus high-performance platforms. In the determination of antibiotic sensibility profiles, disc-diffusion methods (Cefar Diagnótica Ltda) were adopted©. Selective bioassays were carried out with insects of the Lepidoptera (Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens), Coleoptera (Anthonomus grandis), Diptera (Aedes aegypti) and Hemiptera (Euschistus heros) orders, and with the nematode Caenorhabditis elegans. In addition, the antagonistic action of the phytopathogens Fusarium oxysporum f. sp. vasinfectum and Sclerotinia sclerotiorum against the strains under study, and in vitro assays of phosphate solubilization were also performed. Sequencing of the complete genome of the 12 strains determined that all of them belonged to the Bacillus subtilis sensu lato group. In the strains genome were detected genic clusters responsible for encoding secondary metabolites such as surfactin, iturin, fengycins/plipastatin, bacillomycin, bacillisin, and siderophores. Due to the production of these compounds, there was a survival reduction of the Lepidoptera order insects and a reduction in the phytopathogens mycelial growth. These results show that the species of group B. subtilis s.l. can become promising microbiological alternatives to pest and disease control.


Assuntos
Bacillus , Bacillus/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antibacterianos/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Plants (Basel) ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050099

RESUMO

Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.

5.
Anim Reprod ; 20(1): e20220076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938311

RESUMO

The establishment of epigenetic marks during the reprogramming window is susceptible to environmental influences, and stimuli during this critical stage can cause altered DNA methylation in offspring. In a previous study, we found that low levels of sulphur and cobalt (low S/Co) in the diet offered to oocyte donors altered the DNA methylome of bovine embryos. However, due to the extensive epigenetic reprogramming that occurs during embryogenesis, we hypothesized that the different methylation regions (DMRs) identified in the blastocysts may not maintain in adulthood. Here, we aimed to characterize DMRs previously identified in embryos, in the blood and sperm of adult progenies of two groups of heifers (low S/Co and control). We used six bulls and characterized the DNA methylation levels of KDM2A, KDM5A, KMT2D, and DOT1L genes. Our results showed that all DMRs analysed in both groups and tissues were hypermethylated unlike that noticed in the embryonic methylome profiles. These results suggest that embryo DMRs were reprogrammed during the final stages of de novo methylation during embryogenesis or later in development. Therefore, due to the highly dynamic epigenetic state during early embryonic development, we suggest that is essential to validate the DMRs found in embryos in adult individuals.

6.
J Microbiol Methods ; 205: 106665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592897

RESUMO

Bacillus thuringiensis is an important bacterium of the group Bacillus cereus sensu lato due to its insecticidal properties. This microorganism has high genetic variability and its strains produce different Cry toxins, known as δ-endotoxins, which are mainly responsible for its toxic effect on insects that are agricultural pests or vector human diseases. Each strain can express a variety of cry genes, out of a total of 789 cry genes described so far. The detection of these genes is very important to characterize strains, as they may indicate their toxic potential. Several methods have been used to characterize B. thuringiensis strains, but one of the most common techniques is Polymerase Chain Reaction (PCR) from primers that detect the presence of cry genes. This technique has been optimized to make real-time multiplex quantitative PCR (qPCR) assays faster, more efficient, and safer, because the presence of three genes can be detected in a single reaction. In this work, a multiplex assay was developed to identify the presence of genes from the cry1A, cry1C, and cry1F families whose respective toxins are present in both bioinsecticides, and commercial transgenic plants used to control caterpillars. Specific primers were designed to identify the families of the cited genes and the system was validated with samples that were sequenced by next-generation sequencing (NGS). The system was implemented and used to characterize 214 strains. Of these, eight were submitted to conventional PCR, and the results matched, again validating the system. Thus, the application of the proposed technique allows the reliable evaluation through this system to detect the presence of the genes of the families cry1A, cry1C, and cry1F in samples of B. thuringiensis.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Humanos , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética
7.
Mol Ecol Resour ; 23(1): 64-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35852519

RESUMO

Quantifying species trophic interaction strengths is crucial for understanding community dynamics and has significant implications for pest management and species conservation. DNA-based methods to identify species interactions have revolutionized these efforts, but a significant limitation is the poor ability to quantify the strength of trophic interactions, that is the biomass or number of prey consumed. We present an improved pipeline, called Lazaro, to map unassembled shotgun reads to a comprehensive arthropod mitogenome database and show that the number of prey reads detected is quantitatively predicted from the prey biomass consumed, even for indirect predation. Two feeding bioassays were performed: starved coccinellid larvae consuming different numbers of aphids (Prey Quantity bioassay), and starved coccinellid larvae consuming a chrysopid larvae that had consumed aphids (Direct and Indirect Predation bioassay). Prey taxonomic assignment against a mitochondrial genome database had high accuracy (99.8% positive predictive value) and the number of prey reads was directly related to the number of prey consumed and inversely related to the elapsed time since consumption with high significance (r2  = .932, p = 4.92E-6). Aphids were detected up to 6 h after direct predation plus 3 h after indirect predation (9 h in total) and detection was related to the predator-specific decay rates. Lazaro enabled quantitative predictions of prey consumption across multiple trophic levels with high taxonomic resolution while eliminating all false positives, except for a few confirmed contaminants, and may be valuable for characterizing prey consumed by field-sampled predators. Moreover, Lazaro is readily applicable for species diversity determination from any degraded environmental DNA.


Assuntos
Afídeos , Besouros , Animais , Cadeia Alimentar , Besouros/genética , Comportamento Predatório , Afídeos/genética , DNA/genética
8.
Plant Cell Rep ; 42(1): 137-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36348064

RESUMO

KEY MESSAGE: The overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification. Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses. Plant-parasitic nematodes (PPN) can alter the expression profile of several expansin genes in infected root cells. Studies have shown that overexpression or downregulation of particular expansin genes can reduce plant susceptibility to PPNs. Root-knot nematodes (RKN) are obligate sedentary endoparasites of the genus Meloidogyne spp. of which M. incognita is one of the most reported species. Herein, using a transcriptome dataset and real-time PCR assays were identified an expansin A gene (GmEXPA1; Glyma.02G109100) that is upregulated in the soybean nematode-resistant genotype PI595099 compared to the susceptible cultivar BRS133 during plant parasitism by M. incognita. To understand the role of the GmEXPA1 gene during the interaction between soybean plant and M. incognita were generated stable A. thaliana and N. tabacum transgenic lines. Remarkably, both A. thaliana and N. tabacum transgenic lines overexpressing the GmEXPA1 gene showed reduced susceptibility to M. incognita. Furthermore, plant growth, biomass accumulation, and seed yield were not affected in these transgenic lines. Interestingly, significant upregulation of the NtACC oxidase and NtEFE26 genes, involved in ethylene biosynthesis, and NtCCR and Nt4CL genes, involved in lignin biosynthesis, was observed in roots of the N. tabacum transgenic lines, which also showed higher lignin content. These data suggested a possible link between GmEXPA1 gene expression and increased lignification of the root cell wall. Therefore, these data support that engineering of the GmEXPA1 gene in soybean offers a powerful biotechnology tool to assist in RKN management.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tylenchoidea/genética , Arabidopsis/genética , Lignina , Transcriptoma
9.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362377

RESUMO

Banana (Musa spp.), which is one of the world's most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.


Assuntos
Musa , Musa/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Índia , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
10.
Front Plant Sci ; 13: 970113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212369

RESUMO

Oil palm (Elaeis guineensis Jacq.) is a oilseed crop of great economic importance drastically affected by abiotic stresses. MicroRNAs (miRNAs) play crucial roles in transcription and post-transcription regulation of gene expression, being essential molecules in the response of plants to abiotic stress. To better understand the molecular mechanisms behind the response of young oil palm plants to drought stress, this study reports on the prediction and characterization of miRNAs and their putative target genes in the apical leaf of plants subjected to 14 days of water deprivation. Then, the data from this study were compared to the data from a similar study that focused on salinity stress. Both, the drought-and salt-responsive miRNAs and their putative target genes underwent correlation analysis to identify similarities and dissimilarities among them. Among the 81 identified miRNAs, 29 are specific for oil palm, including two (egu-miR28ds and egu-miR29ds) new ones - described for the first time. As for the expression profile, 62 miRNAs were significantly differentially expressed under drought stress, being five up-regulated (miR396e, miR159b, miR529b, egu-miR19sds, and egu-miR29ds) and 57 down-regulated. Transcription factors, such as MYBs, HOXs, and NF-Ys, were predicted as putative miRNA-target genes in oil palm under water deprivation; making them the most predominant group of such genes. Finally, the correlation analysis study revealed a group of putative target genes with similar behavior under salt and drought stresses. Those genes that are upregulated by these two abiotic stresses encode lncRNAs and proteins linked to stress tolerance, stress memory, modulation of ROS signaling, and defense response regulation to abiotic and biotic stresses. In summary, this study provides molecular evidence for the possible involvement of miRNAs in the drought stress response in oil palm. Besides, it shows that, at the molecular level, there are many similarities in the response of young oil palm plants to these two abiotic stresses.

11.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297768

RESUMO

The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.

12.
Planta ; 256(4): 83, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112244

RESUMO

MAIN CONCLUSION: The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions. Herein, the GmGlb1-1 gene was identified in soybean as being upregulated in the nematode-resistant genotype PI595099 compared to the nematode-susceptible cultivar BRS133 during plant parasitism by Meloidogyne incognita. The Arabidopsis thaliana and Nicotiana tabacum transgenic lines overexpressing the GmGlb1-1 gene showed reduced susceptibility to M. incognita. Consistently, gall morphology data indicated that pJ2 nematodes that infected the transgenic lines showed developmental alterations and delayed parasitism progress. Although no significant changes in biomass and seed yield were detected, the transgenic lines showed an elongated, etiolation-like growth under well-irrigation, and also developed more axillary roots under flooding conditions. In addition, transgenic lines showed upregulation of some important genes involved in plant defense response to oxidative stress. In agreement, higher hydrogen peroxide accumulation and reduced activity of reactive oxygen species (ROS) detoxification enzymes were also observed in these transgenic lines. Thus, based on our data and previous studies, it was hypothesized that constitutive overexpression of the GmGlb1-1 gene can interfere in the dynamics of ROS production and NO scavenging, enhancing the acquired systemic acclimation to biotic and abiotic stresses, and improving the cellular homeostasis. Therefore, these collective data suggest that ectopic or nematode-induced overexpression, or enhanced expression of the GmGlb1-1 gene using CRISPR/dCas9 offers great potential for application in commercial soybean cultivars aiming to reduce plant susceptibility to M. incognita.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Globinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/genética
13.
Exp Parasitol ; 238: 108246, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460697

RESUMO

Meloidogyne incognita is the most economically important species of the root-knot nematode complex causing damage to several crops worldwide. During parasitism in host plants, M. incognita secretes several effector proteins to suppress the plant immune system, manipulate the plant cell cycle, and promote parasitism. Several effector proteins have been identified, but their relationship with plant parasitism by M. incognita has not been fully confirmed. Herein, the Minc01696, Minc00344, and Minc00801 putative effector genes were evaluated to assess their importance during soybean and Nicotiana tabacum parasitism by M. incognita. For this study, we used in planta RNAi technology to overexpress dsRNA molecules capable of producing siRNAs that target and downregulate these nematode effector genes. Soybean composite roots and N. tabacum lines were successfully generated, and susceptibility level to M. incognita was evaluated. Consistently, both transgenic soybean roots and transgenic N. tabacum lines carrying the RNAi strategy showed reduced susceptibility to M. incognita. The number of galls per plant and the number of egg masses per plant were reduced by up to 85% in transgenic soybean roots, supported by the downregulation of effector genes in M. incognita during parasitism. Similarly, the number of galls per plant, the number of egg masses per plant, and the nematode reproduction factor were reduced by up to 83% in transgenic N. tabacum lines, which was also supported by the downregulation of the Minc00801 effector gene during parasitism. Therefore, our data indicate that all three effector genes can be a target in the development of new biotechnological tools based on the RNAi strategy in economically important crops for M. incognita control.


Assuntos
Doenças das Plantas , Tylenchoidea , Animais , Doenças das Plantas/prevenção & controle , Raízes de Plantas , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Glycine max/genética , Nicotiana/genética , Tylenchoidea/genética
14.
Gigascience ; 112022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333301

RESUMO

BACKGROUND: A central challenge of DNA gut content analysis is to identify prey in a highly degraded DNA community. In this study, we evaluated prey detection using metabarcoding and a method of mapping unassembled shotgun reads (Lazaro). RESULTS: In a mock prey community, metabarcoding did not detect any prey, probably owing to primer choice and/or preferential predator DNA amplification, while Lazaro detected prey with accuracy 43-71%. Gut content analysis of field-collected arthropod epigeal predators (3 ants, 1 dermapteran, and 1 carabid) from agricultural habitats in Brazil (27 samples, 46-273 individuals per sample) revealed that 64% of the prey species detections by either method were not confirmed by melting curve analysis and 87% of the true prey were detected in common. We hypothesized that Lazaro would detect fewer true- and false-positive and more false-negative prey with greater taxonomic resolution than metabarcoding but found that the methods were similar in sensitivity, specificity, false discovery rate, false omission rate, and accuracy. There was a positive correlation between the relative prey DNA concentration in the samples and the number of prey reads detected by Lazaro, while this was inconsistent for metabarcoding. CONCLUSIONS: Metabarcoding and Lazaro had similar, but partially complementary, detection of prey in arthropod predator guts. However, while Lazaro was almost 2× more expensive, the number of reads was related to the amount of prey DNA, suggesting that Lazaro may provide quantitative prey information while metabarcoding did not.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Artrópodes/metabolismo , Brasil , DNA/metabolismo , Ecossistema , Humanos , Análise de Sequência de DNA
15.
J Dev Orig Health Dis ; 13(2): 231-243, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33941306

RESUMO

Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.


Assuntos
Cobalto , Epigenoma , Animais , Bovinos , Cobalto/metabolismo , Metilação de DNA , Feminino , Mamíferos , Oócitos/metabolismo , Enxofre/metabolismo
16.
Plants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961136

RESUMO

Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.

17.
BMC Plant Biol ; 21(1): 518, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749653

RESUMO

BACKGROUND: Several mechanisms regulating gene expression contribute to restore and reestablish cellular homeostasis so that plants can adapt and survive in adverse situations. MicroRNAs (miRNAs) play roles important in the transcriptional and post-transcriptional regulation of gene expression, emerging as a regulatory molecule key in the responses to plant stress, such as cold, heat, drought, and salt. This work is a comprehensive and large-scale miRNA analysis performed to characterize the miRNA population present in oil palm (Elaeis guineensis Jacq.) exposed to a high level of salt stress, to identify miRNA-putative target genes in the oil palm genome, and to perform an in silico comparison of the expression profile of the miRNAs and their putative target genes. RESULTS: A group of 79 miRNAs was found in oil palm, been 52 known miRNAs and 27 new ones. The known miRNAs found belonged to 28 families. Those miRNAs led to 229 distinct miRNA-putative target genes identified in the genome of oil palm. miRNAs and putative target genes differentially expressed under salinity stress were then selected for functional annotation analysis. The regulation of transcription, DNA-templated, and the oxidation-reduction process were the biological processes with the highest number of hits to the putative target genes, while protein binding and DNA binding were the molecular functions with the highest number of hits. Finally, the nucleus was the cellular component with the highest number of hits. The functional annotation of the putative target genes differentially expressed under salinity stress showed several ones coding for transcription factors which have already proven able to result in tolerance to salinity stress by overexpression or knockout in other plant species. CONCLUSIONS: Our findings provide new insights into the early response of young oil palm plants to salinity stress and confirm an expected preponderant role of transcription factors - such as NF-YA3, HOX32, and GRF1 - in this response. Besides, it points out potential salt-responsive miRNAs and miRNA-putative target genes that one can utilize to develop oil palm plants tolerant to salinity stress.


Assuntos
MicroRNAs/metabolismo , Óleo de Palmeira/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Tolerância ao Sal/fisiologia , Análise de Sequência de RNA , Fatores de Transcrição/genética
18.
Sci Rep ; 11(1): 11097, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045561

RESUMO

Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.


Assuntos
Arachis/genética , Arachis/parasitologia , Secas , Estresse Fisiológico/fisiologia , Tylenchoidea , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Transcriptoma
19.
RNA Biol ; 18(11): 1653-1681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33302789

RESUMO

RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.


Assuntos
Inativação Gênica , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/genética , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas de Insetos/genética , Insetos/metabolismo , Filogenia , Domínios Proteicos
20.
Front Physiol ; 11: 588450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192604

RESUMO

The sugarcane giant borer (SGB), Telchin licus licus, is a pest that has strong economic relevance for sugarcane producers. Due to the endophytic behavior of the larva, current methods of management are inefficient. A promising biotechnological management option has been proposed based on RNA interference (RNAi), a process that uses molecules of double-stranded RNA (dsRNA) to specifically knock down essential genes and reduce insect survival. The selection of suitable target genes is often supported by omic sciences. Studies have shown that genes related to feeding adaptation processes are good candidates to be targeted by RNAi for pest management. Among those genes, esterases are highlighted because of their impact on insect development. In this study, the objective was to evaluate the transcriptome responses of the SGB's gut in order to provide curated data of genes that could be used for pest management by RNAi in future studies. Further, we validated the function of an esterase-coding gene and its potential as a target for RNAi-based control. We sequenced the gut transcriptome of SGB larvae by Illumina HiSeq and evaluated its gene expression profiles in response to different diets (sugarcane stalk and artificial diet). We obtained differentially expressed genes (DEGs) involved in detoxification, digestion, and transport, which suggest a generalist mechanism of adaptation in SGB larvae. Among the DEGs, was identified and characterized a candidate juvenile hormone esterase gene (Tljhe). We knocked down the Tljhe gene by oral delivery of dsRNA molecules and evaluated gene expression in the gut. The survival and nutritional parameters of the larvae were measured along the developmental cycle of treated insects. We found that the gene Tljhe acts as a regulator of feeding behavior. The knockdown of Tljhe triggered a forced starvation state in late larval instars that significantly reduced the fitness of the larvae. However, the mechanism of action of this gene remains unclear, and the correlation between the expression of Tljhe and the levels of juvenile hormone (JH) metabolites in the hemolymph of the SGB must be assessed in future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA