Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4064, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452014

RESUMO

The currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO2 planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered Ba2Ca5Cu6O12(F,O)2 with inner CuO2 layers, which are clean with the extremely low disorder, by angle-resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. We find a tiny Fermi pocket with a doping level less than 1% to exhibit well-defined quasiparticle peaks which surprisingly lack the polaronic feature. This provides the first evidence that the slightest amount of carriers is enough to turn a Mott insulating state into a metallic state with long-lived quasiparticles. By tuning hole carriers, we also find an unexpected phase transition from the superconducting to metallic states at 4%. Our results are distinct from the nodal liquid state with polaronic features proposed as an anomaly of the heavily underdoped cuprates.


Assuntos
Cobre , Supercondutividade , Eletrônica , Transição de Fase
2.
Phys Rev Lett ; 128(4): 047401, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148147

RESUMO

By employing the exact diagonalization method, we investigate the high-harmonic generation (HHG) of the correlated systems under the strong laser irradiation. For the extended Hubbard model on a periodic chain, HHG close to the quantum critical point (QCP) is more significant compared to two neighboring gapped phases (i.e., charge-density-wave and spin-density wave states), especially in low frequencies. We confirm that the systems in the vicinity of the QCP are supersensitive to the external field and more optical-transition channels via excited states are responsible for HHG. This feature holds the potential of obtaining high-efficiency harmonics by making use of materials approaching QCP. Based on the two-dimensional Haldane model, we further propose that the even- or odd-order components of generated harmonics can be promisingly regarded as spectral signals to distinguish the topologically ordered phases from locally ordered ones. Our findings in this Letter pave the way to achieve ultrafast light source from HHG in strongly correlated materials and to study quantum phase transition by nonlinear optics in strong laser fields.

3.
Phys Rev Lett ; 126(12): 127404, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834838

RESUMO

Motivated by the recent development of time-resolved resonant-inelastic x-ray scattering (TRRIXS) in photoexcited antiferromagnetic Mott insulators, we numerically investigate momentum-dependent transient spin dynamics in a half-filled Hubbard model on a square lattice. After turning off a pumping photon pulse, the intensity of a dynamical spin structure factor temporally oscillates with frequencies determined by the energy of two magnons in the antiferromagnetic Mott insulator. We find an antiphase behavior in the oscillations between two orthogonal momentum directions, parallel and perpendicular to the electric field of a pump pulse. The phase difference comes from the B_{1g} channel of the two-magnon excitation. Observing the antiphase oscillations will be a big challenge for TRRIXS experiments when their time resolution will be improved by more than an order of magnitude.

4.
Inorg Chem ; 60(4): 2228-2233, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33502187

RESUMO

Making and breaking bonds in a solid-state compound greatly influences physical properties. A well-known playground for such bonding manipulation is the ThCr2Si2-type structure AT2X2, allowing a collapse transition where a X-X dimer forms by a chemical substitution or external stimuli. Here, we report a pressure-induced collapse transition in the structurally related BaTi2Pn2O (Pn = As, Sb) at a transition pressure Pc of ∼15 GPa. The Pn-Pn bond formation is related with Pn-p band filling, which is controlled by charge transfer from the Ti-3d band. At Pc, the Sb-Sb distance in BaTi2Sb2O shrinks due to bond formation, but interestingly, the Sb-Sb expands with increasing pressure above Pc. This expansion, which was not reported in ThCr2Si2-type compounds, may arise from heteroleptic coordination geometry around titanium, where a compression of the Ti-O bond plays a role. Electrical resistivity measurements of BaTi2Sb2O up to 55 GPa revealed an increasing trend of the superconducting transition temperature with pressure. This study presents structure motifs that allow flexible bonding manipulation and property control with heteroleptic coordination geometry.

5.
Science ; 369(6505): 833-838, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792396

RESUMO

In cuprate superconductors with high critical transition temperature (T c), light hole-doping to the parent compound, which is an antiferromagnetic Mott insulator, has been predicted to lead to the formation of small Fermi pockets. These pockets, however, have not been observed. Here, we investigate the electronic structure of the five-layered Ba2Ca4Cu5O10(F,O)2, which has inner copper oxide (CuO2) planes with extremely low disorder, and find small Fermi pockets centered at (π/2, π/2) of the Brillouin zone by angle-resolved photoemission spectroscopy and quantum oscillation measurements. The d-wave superconducting gap opens along the pocket, revealing the coexistence between superconductivity and antiferromagnetic ordering in the same CuO2 sheet. These data further indicate that superconductivity can occur without contribution from the antinodal region around (π, 0), which is shared by other competing excitations.

6.
Nat Commun ; 11(1): 3429, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647219

RESUMO

Observation of a quantum spin liquid (QSL) state is one of the most important goals in condensed-matter physics, as well as the development of new spintronic devices that support next-generation industries. The QSL in two dimensional quantum spin systems is expected to be due to geometrical magnetic frustration, and thus a kagome-based lattice is the most probable playground for QSL. Here, we report the first experimental results of the QSL state on a square-kagome quantum antiferromagnet, KCu6AlBiO4(SO4)5Cl. Comprehensive experimental studies via magnetic susceptibility, magnetisation, heat capacity, muon spin relaxation (µSR), and inelastic neutron scattering (INS) measurements reveal the formation of a gapless QSL at very low temperatures close to the ground state. The QSL behavior cannot be explained fully by a frustrated Heisenberg model with nearest-neighbor exchange interactions, providing a theoretical challenge to unveil the nature of the QSL state.

7.
Phys Rev E ; 97(4-1): 043308, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758620

RESUMO

We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

8.
Sci Rep ; 7(1): 16785, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196734

RESUMO

K3Cu3AlO2(SO4)4 is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agreement with a theoretical prediction: a dimer-monomer composite structure, where the dimer is caused by strong antiferromagnetic (AFM) coupling and the monomer forms an almost isolated quantum AFM chain controlling low-energy excitations. Moreover, muon spin rotation/relaxation spectroscopy shows no long-range ordering down to 90 mK, which is roughly three orders of magnitude lower than the exchange interaction of the quantum AFM chain. K3Cu3AlO2(SO4)4 is, thus, regarded as a compound that exhibits a Tomonaga-Luttinger spin liquid behavior at low temperatures close to the ground state.

9.
Phys Rev Lett ; 109(19): 197401, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215423

RESUMO

We present a compelling response of a low-dimensional strongly correlated system to an external perturbation. Using the time-dependent Lanczos method we investigate a nonequilibrium evolution of the half-filled one-dimensional extended Hubbard model, driven by a transient laser pulse. When the system is close to the phase boundary, by tuning the laser frequency and strength, a sustainable charge order enhancement is found that is absent in the Mott insulating phase. We analyze the conditions and investigate possible mechanisms of emerging charge order enhancement. Feasible experimental realizations are proposed.

10.
J Phys Condens Matter ; 23(46): 464202, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22052807

RESUMO

We investigate the pressure effect on the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound α-(BEDT-TTF)2I3. The trajectory of the contact points is investigated using the tight-binding model with the transfer integrals determined by x-ray diffraction experiments. Vanishing of the Dirac fermion spectrum, opening of the gap, and pressure dependence of interlayer magnetoresistance are discussed.

11.
Phys Rev Lett ; 105(3): 037203, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867799

RESUMO

We investigate Dirac fermions in the antiferromagnetic metallic state of iron-based superconductors. Deriving an effective Hamiltonian for Dirac fermions, we reveal that there exist two Dirac cones carrying the same chirality, contrary to graphene, compensated by a Fermi surface with a quadratic energy dispersion as a consequence of a nontrivial topological property inherent in the band structure. We also find that the presence of the Dirac fermions gives the difference of sign-change temperatures between the Hall coefficient and the thermopower. This is consistent with available experimental data.

12.
Phys Rev Lett ; 105(25): 257005, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231617

RESUMO

Recent experiments on Bi-based cuprate superconductors have revealed an unexpected enhancement of the pairing correlations near the interstitial oxygen dopant ions. Here we propose a possible mechanism--based on local screening effects--by which the oxygen dopants do modify the electronic parameters within the CuO2 planes and strongly increase the superexchange coupling J. This enhances the spin pairing effects locally and may explain the observed spatial variations of the density of states and the pairing gap.

13.
Phys Rev Lett ; 101(24): 247003, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113656

RESUMO

Recently, scanning tunneling microscopy on the Bi-2212 cuprate superconductor has revealed a spatial variation of the energy gap that is directly correlated with a modulation of the apical oxygen position. We identify two mechanisms by which out-of-plane oxygens can modulate the pairing interaction within the CuO2 layer: a covalency between the x2-y2 band and apical p orbital, and a screening of correlation U by apical oxygen polarization. Both effects strongly depend on the apical oxygen position, and their cooperative action explains the experiment.

14.
Phys Rev Lett ; 91(11): 117001, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-14525453

RESUMO

Predictions are made for the momentum- and carrier-dependent degradation of the Mott gap upon doping in high-T(c) cuprates as would be observed in Cu K-edge resonant inelastic x-ray scattering (RIXS). The two-dimensional Hubbard model with second- and third-nearest-neighbor hopping terms has been studied by numerical exact diagonalization. Special emphasis is placed on the particle-hole asymmetry of the Mott gap excitations. We argue that the Mott gap excitations observed by RIXS are significantly influenced by the interaction between charge carriers and antiferromagnetic correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA