Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ACS Omega ; 8(41): 38641-38657, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867693

RESUMO

This study is aimed to synthesize morpholine- and thiazolidine-based novel 5-(substituted)benzylidene)-2-(morpholinoimino)-3-phenylthiazolidin-4-ones (3-26) and characterized by molecular spectroscopy. The synthesized compounds were subjected to antioxidant activity with anticholinesterase, tyrosinase, and urease inhibition activities and evaluated the structure-activity relationship (SAR) of enzyme inhibition activities. Compound 11 was found to be the most active antioxidant. In anticholinesterase inhibition, compound 12 (IC50: 17.41 ± 0.22 µM) was the most active against AChE, while compounds 3-26 ( except 3, 8, and 17) showed notable activity against BChE. Compounds 17 (IC50: 3.22 ± 0.70 mM), 15 (IC50: 5.19 ± 0.03 mM), 24 (IC50: 7.21 ± 0.27 mM), 23 (IC50: 8.05 ± 0.11 mM), 14 (IC50: 8.10 ± 0.22 mM), 25 (IC50: 8.40 ± 0.64 mM), 26 (IC50: 8.76 ± 0.90 mM), and 22 (IC50: 9.13 ± 0.55 mM) produced higher tyrosinase inhibition activity. In urease inhibition activity, compounds 20 (IC50: 16.79 ± 0.19 µM), 19 (IC50: 18.25 ± 0.50 µM), 18 (IC50: 20.24 ± 0.77 µM), 26 (IC50: 21.51 ± 0.44 µM), 25 (IC50: 21.70 ± 0.06 µM), and 24 (IC50: 22.49 ± 0.11 µM) demonstrated excellent activities. Besides, the molecular docking study was applied to better understand the inhibitory mechanism between (1-26) compounds and enzymes at the molecular level. According to the results of this study, the synthesized compounds exhibited a better binding affinity toward these enzymes compared to the positive control. Further, molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) binding free energy and molecular dynamics (MD) simulation analyses were performed for AChE with compound 26, which showed high inhibitory activity in silico and in vitro studies. In conclusion, novel morpholine and thiazolidine-based derivative compounds may be pharmacologically effective agents for AChE, BChE, tyrosinase, and urease enzymes.

2.
J Cell Mol Med ; 27(20): 3168-3188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37724615

RESUMO

The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.

3.
Chem Biodivers ; 19(10): e202200325, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35984664

RESUMO

Mono(M1-M5)- and di(DM1-DM5)-sulfonamide derivatives were synthesized by the reaction of 4-iodobenzenesulfonyl chloride compound and aniline derivatives in basic medium. The structures of sulfonamide derivatives were characterized by spectroscopic and X-ray diffraction methods. All compounds were screened for acetylcholinesterase (AChE) inhibitory studies and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging activities. Among the compounds tested, compound M1 showed the best activity against both AChE (IC50 =42.09 µg/mL for AChE) and DPPH (IC50 =9.94 µg/mL for DPPH). By placing compounds at the active site of AChE, their binding energies and modes were determined. Docking studies were performed in order to investigate binding interaction between the synthesized compounds and AChE. The most active M1 compound showed its low CDOCKER energy (-65,834 kcal/mol).


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Antioxidantes/química , Cloretos , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfanilamida , Relação Estrutura-Atividade
4.
Struct Chem ; 33(5): 1799-1813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505923

RESUMO

In silico studies performed on the metabolites of four Cameroonian medicinal plants with a view to propose potential molecules to fight against COVID-19 were carried out. At first, molecular docking was performed for a set of 84 selected phytochemicals with SARS-CoV-2 main protease (PDB ID: 6lu7) protein. It was further followed by assessing the pharmacokinetics and pharmacological abilities of 15 compounds, which showed low binding energy values. As the screening criteria for their ADMET properties were performed, only two compounds have shown suitable pharmacological properties for human administration which were shortlisted. Furthermore, the stability of binding of these compounds was assessed by performing molecular dynamics (MD) simulations. Based on further analysis through molecular dynamics simulations and reactivity studies, it was concluded that only the Pycnanthuquinone C (17) and the Pycnanthuquinone A (18) extracted from the Pycnanthus angolensis could be considered as candidate inhibitors for targeted protein. Indeed, we expect that these compounds could show excellent in vitro and in vivo activity against SARS-CoV-2. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-01939-7.

5.
J Biomol Struct Dyn ; 40(10): 4301-4313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33289608

RESUMO

In silico studies are attracting considerable interest due to their ability to understand protein-ligand interactions at the atomic level. The main principal tools of this in silico analyses are molecular docking and molecular dynamic (MD) simulation. This paper examines how can natural compounds that are derived from Salviae miltiorrhizae to block Neisseria adhesion A Regulatory protein (NadR). In molecular docking analysis, only four compounds were found in higher binding affinity with NadR among 10 candidates (tanshinol B, tanshinol A, lithospermic acid and tournefolal were -7.61, -7.56, -8.22 and -7.81 kcal/mol, respectively, compared to -7.23 kcal/mol of native ligand). Absorption, distribution, metabolism, excretion (ADME) and toxicity properties, medicinal chemistry profile, and physicochemical features were displayed that tournefolal contains good properties to work as a safe and good anti-adhesive drug. Therefore, the complexes of these four ligands with NadR protein were subjected to 100 ns of MD simulation. RMSD, RMSF, RG and hydrogen bonding exhibited that tournefolal showed stable binding affinity and molecular interaction with NadR protein. In light of these results, there is now a need to conduct much more in vitro and in vivo studies about the efficacy of tournefolal.Communicated by Ramaswamy H. Sarma.


Assuntos
Computadores , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular
6.
J Biomol Struct Dyn ; 39(5): 1561-1571, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32093548

RESUMO

In this work, we presented the synthesis and investigation of binding properties of the new morpholine containing 3-amido-9-ethylcarbazole derivative (CMR) to calf thymus DNA (ctDNA) and human serum albumin (HSA) by fluorescence spectroscopy, UV absorption spectroscopy and molecular docking method. A decrease in Stern-Volmer constants was obtained with increase in temperature; it shows that static quenching mechanism leads to formation of new CMR-DNA/HSA complexes, which have hydrophobic interaction as the predominant role in the binding modes. Also, binding properties of DNA were investigated with competition assays on two probes (EB and H33258) by absorption, ionic strength and iodide ion quenching methods. The results suggested that CMR entered into the minor groove binding on the A-T region of DNA. The spectral data further confirmed by molecular docking which elicited that CMR complexes have similar interaction and conformation trends to each target, DNA and HSA. The experimental and computational results show that CMR has been classified as a promising molecule in drug designing of other carbazole derivatives.Communicated by Ramaswamy H. Sarma.


Assuntos
DNA , Albumina Sérica Humana , Sítios de Ligação , DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Morfolinas , Ligação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
7.
Eur J Med Chem ; 187: 111937, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841727

RESUMO

Prodrugs for targeted tumor therapies have been extensively studied in recent years due to not only maximising therapeutic effects on tumor cells but also reducing or eliminating serious side effects on healthy cells. This strategy uses prodrugs which are safe for normal cells and form toxic metabolites (drugs) after selective reduction by enzymes in tumor tissues. In this study, prodrug candidates (1-36) containing nitro were designed, synthesized and characterized within the scope of chemical experiments. Drug-likeness properties of prodrug candidates were analyzed using DS 2018 to investigate undesired toxicity effects. In vitro cytotoxic effects of prodrug canditates were performed with MTT assay for human hepatoma cells (Hep3B) and prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) as healthy control. Non-toxic compounds (3, 5, 7, 10, 12, 15, 17, 19 and 21-23), and also compounds (1, 2, 5, 6, 9, 11, 14, 16, 20 and 24) which had low toxic effects, were selected to examine their suitability as prodrug canditates. The reduction profiles and kinetic studies of prodrug/Ssap-NtrB combinations were performed with biochemical analyses. Then, selected prodrug/Ssap-NtrB combinations were applied to prostate cancer cells to determine toxicity. The results of theoretical, in vitro cytotoxic and biochemical studies suggest 14/Ssap-NtrB, 22/Ssap-NtrB and 24/Ssap-NtrB may be potential prodrug/enzyme combinations for nitroreductase (Ntr)-based prostate cancer therapy.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Nitrorredutases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Compostos de Anilina/síntese química , Compostos de Anilina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Terapia Genética , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Nitrorredutases/genética , Nitrorredutases/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 171: 383-400, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928710

RESUMO

The use of nitroreductases (NTR) that catalyze the reduction of nitro compounds by using NAD(P)H in GDEPT (Gene-directed enzyme prodrug therapy) studies which minimize toxicity at healthy cells and increases concentration of drugs at cancer cells is remarkable. Discovery of new prodrug/NTR combinations is necessary to be an alternative to known prodrug candidates such as CB1954, SN23862, PR-104A. For this aim, nitro containing aromatic amides (A1-A23)2 were designed, synthesized, performed in silico ADMET and molecular docking techniques in this study. Prodrug candidates were studied on reduction potentials with Ssap-NtrB by HPLC system. Also, cyototoxic properties and prodrug ability of these amides were investigated using different cancer cell lines such as Hep3B and PC3. As a result of theoretical and biological studies, combinations of A5, A6 and A20 with Ssap-NtrB can be suggested as potential prodrugs/enzyme combinations at NTR based cancer therapy compared with CB1954/NfsB.


Assuntos
Amidas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/farmacologia , Amidas/síntese química , Amidas/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Nitrorredutases/química , Células PC-3 , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
9.
Comput Biol Chem ; 76: 179-190, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30048925

RESUMO

Naturally occurring phytohormones have shown distinguished potential in chemoprevention and treatment of chronic inflammatory diseases in mammalian cells. Strigolactones (SLs) are a class of carotenoid-derived lactones regulating many aspects of plant development and recently recognized as phytohormones with promising anticancer activity. In this study, GR24, a synthetic analog and representative of SLs, induced the expression of phase II detoxifying enzymes such as HO-1 and NQO1 in hepatic and macrophage cell lines under normal and inflammatory conditions, respectively. This effect has been found to be mediated by Nrf2 activation. In silico molecular docking against 16-mer peptide binding site on Keap1 suggested that GR24 may exert its biological activity by interfering with Keap1 and Nrf2 binding. GR24 also displayed remarkably potent inhibitory activity against the production of nitric oxide (NO) and molecular docking analysis on iNOS supported experimental data. Furthermore, GR24 dose dependently suppressed the LPS-induced iNOS expression at both mRNA and protein level. It also significantly decreased IL-1ß release, mRNA expression of IL-1ß and COX-2, as well as nuclear accumulation of NFÒ¡B at the low micro molar range in LPS-stimulated murine macrophages. GR24 promoted AKT activation in insulin resistant skeletal muscle cells and downregulated the expression of enzymes, PEPCK and G6Pase control the rate limiting steps of gluconeogenesis in hepatic cells. The results of molecular docking and ADMET analyses indicated that GR24 might be classified as druggable molecule in drug design. Taken together, all results suggest that SLs can be promising multi-potent botanical leads for the mitigation of inflammatory-mediated chronic disorders.


Assuntos
Inflamação/metabolismo , Lactonas/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Gluconeogênese/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Mioblastos/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Regulação para Cima
10.
Int Immunopharmacol ; 43: 129-139, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27988460

RESUMO

A series of nitro substituted benzamide derivatives were synthesized and evaluated for their potential anti-inflammatory activities in vitro. Firstly, all compounds (1-6) were screened for their inhibitory capacity on LPS induced nitric oxide (NO) production in RAW264.7 macrophages. Compounds 5 and 6 demonstrated significantly high inhibition capacities in a dose-dependent manner with IC50 values of 3.7 and 5.3µM, respectively. These two compounds were also accompanied by no cytotoxicity at the studied concentrations (max 50µM) in macrophages. Molecular docking analysis on iNOS revealed that compounds 5 and 6 bind to the enzyme more efficiently compared to other compounds due to having optimum number of nitro groups, orientations and polarizabilities. In addition, 5 and 6 demonstrated distinct regulatory mechanisms for the expression of the iNOS enzyme at the mRNA and protein levels. Specifically, both suppressed expressions of COX-2, IL-1ß and TNF-α significantly, at 10 and 20µM. However, only compound 6 significantly and considerably decreased LPS-induced secretion of IL-1ß and TNF-α. These results suggest that compound 6 may be a multi-potent promising lead compound for further optimization in structure and as well as for in vivo validation studies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzamidas/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrocompostos/farmacologia , Animais , Benzamidas/química , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/fisiologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/química , Nitrocompostos/química , Ligação Proteica , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-26916649

RESUMO

The coronavirus nucleocapsid (N) plays an important role in the virus structure, the replication, and the transcription of CoV. This protein, which has a helix and flexible structure, and capable of binding on to the viral genomic RNA, is a non-structural protein (nsp3). Many studies suggest that the N protein interaction with nsp3 plays a critical role in the virus replication early in infection. Therefore, it is necessary to know the definition of the interaction mechanism of N and nsp3 protein in terms of the CoV replication transcription mechanism. We report on the homology modeling, molecular dynamics simulation, and docking studies to explain the structure-function relationship and the interaction mechanism. In addition, the prototype MHV is preferred in the wet experiment, so we also based our study on the MHV N and nsp3 proteins that belong to the experimental study. The amino acid sequences of MHV N and nsp3 proteins have similarity between human and severe acute respiratory syndrome coronavirus. Therefore, the 3D structure models of these proteins were built with using the crystal structure of the CoV family members as a template. By following these models, molecular dynamics simulations were applied to attain the most stable conformation. Finally, protein-protein docking was performed to prove accuracy of model structures of the MHV N and to clarify the interaction with nsp3. As a result, Lys 113, Arg 125, Tyr 127, Glu 173, Tyr 190 residues that play an important role in virus replication were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA