Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 16862, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803064

RESUMO

A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver. The biophysical model uses a simplified formulation of heat deposition on the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined to assess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model prediction compared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculature shortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermal prediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be used as liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermal ablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate its integration into the clinical workflow.


Assuntos
Técnicas de Ablação , Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Fígado/irrigação sanguínea , Neoplasias Hepáticas/cirurgia , Ablação por Cateter/métodos
3.
PLoS One ; 18(8): e0289674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540658

RESUMO

PURPOSE: Heat-induced destruction of cancer cells via microwave ablation (MWA) is emerging as a viable treatment of primary and metastatic liver cancer. Prediction of the impacted zone where cell death occurs, especially in the presence of vasculature, is challenging but may be achieved via biophysical modeling. To advance and characterize thermal MWA for focal cancer treatment, an in vivo method and experimental dataset were created for assessment of biophysical models designed to dynamically predict ablation zone parameters, given the delivery device, power, location, and proximity to vessels. MATERIALS AND METHODS: MWA zone size, shape, and temperature were characterized and monitored in the absence of perfusion in ex vivo liver and a tissue-mimicking thermochromic phantom (TMTCP) at two power settings. Temperature was monitored over time using implanted thermocouples with their locations defined by CT. TMTCPs were used to identify the location of the ablation zone relative to the probe. In 6 swine, contrast-enhanced CTs were additionally acquired to visualize vasculature and absence of perfusion along with corresponding post-mortem gross pathology. RESULTS: Bench studies demonstrated average ablation zone sizes of 4.13±1.56cm2 and 8.51±3.92cm2, solidity of 0.96±0.06 and 0.99±0.01, ablations centered 3.75cm and 3.5cm proximal to the probe tip, and temperatures of 50 ºC at 14.5±13.4s and 2.5±2.1s for 40W and 90W ablations, respectively. In vivo imaging showed average volumes of 9.8±4.8cm3 and 33.2±28.4cm3 and 3D solidity of 0.87±0.02 and 0.75±0.15, and gross pathology showed a hemorrhagic halo area of 3.1±1.2cm2 and 9.1±3.0cm2 for 40W and 90W ablations, respectfully. Temperatures reached 50ºC at 19.5±9.2s and 13.0±8.3s for 40W and 90W ablations, respectively. CONCLUSION: MWA results are challenging to predict and are more variable than manufacturer-provided and bench predictions due to vascular stasis, heat-induced tissue changes, and probe operating conditions. Accurate prediction of MWA zones and temperature in vivo requires comprehensive thermal validation sets.


Assuntos
Fígado , Animais , Suínos , Fígado/patologia , Fígado/cirurgia , Micro-Ondas , Temperatura , Técnicas de Ablação , Ablação por Radiofrequência
4.
Res Sq ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131766

RESUMO

A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actualablation ground truth from a clinical data set in liver. The biophysical model uses a simplified formulation of heat depositionon the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined toassess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model predictioncompared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculatureshortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermalprediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be usedas liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermalablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate itsintegration into the clinical workflow.

5.
Med Phys ; 50(3): 1290-1304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36635955

RESUMO

BACKGROUND: Electroporation-based cancer treatments are minimally invasive, nonthermal interventional techniques that leverage cell permeabilization to ablate the target tumor. However, the amount of permeabilization is susceptible to the numerous uncertainties during treatment, such as patient-specific variations in the tissue, type of the tumor, and the resolution of imaging equipment. These uncertainties can reduce the extent of ablation in the tissue, thereby affecting the effectiveness of the treatment. PURPOSE: The aim of this work is to understand the effect of these treatment uncertainties on the treatment outcome for irreversible electroporation (IRE) in the case of colorectal liver metastasis (CRLM). Understanding the nature and extent of these effects can help us identify the influential treatment parameters and build better models for predicting the treatment outcome. METHODS: This is an in silico study using a static computational model with a custom applicator design, spherical tissue, and tumor geometry. A nonlinear electrical conductivity, dependent on the local electric field, is considered. Morris analysis is used to identify the influential treatment parameters on the treatment outcome. Seven treatment parameters pertaining to the relative tumor location with respect to the applicator, the tumor growth pattern, and the electrical conductivity of tissue are analyzed. The treatment outcome is measured in terms of the relative tumor ablation with respect to the target ablation volume and total ablation volume. RESULTS: The Morris analysis was performed with 800 model evaluations, sampled from the seven dimensional input parameter space. Electrical properties of the tissue, especially the electrical conductivity of the tumor before ablation, were found to be the most influential parameter for relative tumor ablation and total ablation volume. This parameter was found to be about 4-15 times more influential than the least influential parameter, depending on the tumor size. The tumor border configuration was identified as the least important parameter for treatment effectiveness. The most desired treatment outcome is obtained by a combination of high healthy liver conductivity and low tumor conductivity. This information can be used to tackle worst-case scenarios in treatment planning. Finally, when the safety margins used in the clinical applications are accounted for, the effects of uncertainties in the treatment parameters reduce drastically. CONCLUSIONS: The results of this work can be used to create an efficient surrogate estimator for uncertainty quantification in the treatment outcome, that can be utilized in optimal real-time treatment planning solutions.


Assuntos
Técnicas de Ablação , Neoplasias Hepáticas , Humanos , Incerteza , Eletroporação/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Condutividade Elétrica , Técnicas de Ablação/métodos
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4307-4310, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892174

RESUMO

The level of detail of typical numerical models of microwave tumor ablations poses a challenge to the development of generic, model based treatment planning tools aiming at real time performance. The present contribution describes a flexible and accurate approximation of the microwave heat absorption that aims at mitigating these issues.


Assuntos
Técnicas de Ablação , Ablação por Cateter , Neoplasias , Temperatura Alta , Humanos , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA