Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 57(21): 8096-8106, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184088

RESUMO

Drinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities. Much of the PFAS at these sites consist of precursors that can transform into terminal compounds of known health concern but are omitted from standard analytical methods. Here, we estimate the expected duration and contribution of precursor biotransformation to groundwater PFAS contamination at an AFFF-contaminated military base on Cape Cod, Massachusetts, United States, by optimizing a geochemical box model using measured PFAS concentrations from a multidecadal time series of groundwater and a soil survey in the source zone. A toolbox of analytical techniques used to reconstruct the mass budget of PFAS showed that precursors accounted for 46 ± 8% of the extractable organofluorine (a proxy for total PFAS) across years. Terminal PFAS still exceed regulatory limits by 2000-fold decades after AFFF use ceased. Measurements and numerical modeling show that sulfonamido precursors are retained in the vadose zone and their slow biotransformation into perfluoroalkyl sulfonates (half-life > 66 yr) sustains groundwater concentrations of perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS). The estimated PFAS reservoir in the vadose zone and modeled flux into groundwater suggest PFAS contamination above regulatory guidelines will persist for centuries without remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Militares , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Água , Poluição da Água , Fluorocarbonos/análise , Alcanossulfonatos , Água Subterrânea/química
2.
Environ Sci Technol ; 56(4): 2279-2288, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35113548

RESUMO

In 2019, 254 samples were collected from five aquifer systems to evaluate perfluoroalkyl and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24 PFAS were detected in groundwater, with 60 and 20% of public-supply and domestic wells, respectively, containing at least one PFAS detection. Concentrations of tritium, chloride, sulfate, DOC, and manganese + iron; percent urban land use within 500 m of the wells; and VOC and pharmaceutical detection frequencies were significantly higher in samples containing PFAS detections than in samples with no detections. Boosted regression tree models that consider 57 chemical and land-use variables show that tritium concentration, distance to the nearest fire-training area, percentage of urban land use, and DOC and VOC concentrations are the top five predictors of PFAS detections, consistent with the hydrologic position, geochemistry, and land use being important controls on PFAS occurrence in groundwater. Model results indicate that it may be possible to predict PFAS detections in groundwater using existing data sources.


Assuntos
Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Água Subterrânea/química , Estados Unidos , Poluentes Químicos da Água/análise
3.
Environ Sci Process Impacts ; 23(12): 1893-1905, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779453

RESUMO

Elevated concentrations of per- and polyfluoroalkyl substances (PFAS) in drinking-water supplies are a major concern for human health. It is therefore essential to understand factors that affect PFAS concentrations in surface water and groundwater and the transformation of perfluoroalkyl acid (PFAA) precursors that degrade into terminal compounds. Surface-water/groundwater exchange can occur along the flow path downgradient from PFAS point sources and biogeochemical conditions can change rapidly at these exchange boundaries. Here, we investigate the influence of surface-water/groundwater boundaries on PFAS transport and transformation. To do this, we conducted an extensive field-based analysis of PFAS concentrations in water and sediment from a flow-through lake fed by contaminated groundwater and its downgradient surface-water/groundwater boundary (defined as ≤100 cm below the lake bottom). PFAA precursors comprised 45 ± 4.6% of PFAS (PFAA precursors + 18 targeted PFAA) in the predominantly oxic lake impacted by a former fire-training area and historical wastewater discharges. In shallow porewater downgradient from the lake, this percentage decreased significantly to 25 ± 11%. PFAA precursor concentrations decreased by 85% between the lake and 84-100 cm below the lake bottom. PFAA concentrations increased significantly within the surface-water/groundwater boundary and in downgradient groundwater during the winter months despite lower stable concentrations in the lake water source. These results suggest that natural biogeochemical fluctuations associated with surface-water/groundwater boundaries may lead to PFAA precursor loss and seasonal variations in PFAA concentrations. Results of this work highlight the importance of dynamic biogeochemical conditions along the hydrological flow path from PFAS point sources to potentially affected drinking water supplies.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Humanos , Lagos , Estações do Ano , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 55(6): 3686-3695, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667081

RESUMO

Water supplies for millions of U.S. individuals exceed maximum contaminant levels for per- and polyfluoroalkyl substances (PFAS). Contemporary and legacy use of aqueous film forming foams (AFFF) is a major contamination source. However, diverse PFAS sources are present within watersheds, making it difficult to isolate their predominant origins. Here we examine PFAS source signatures among six adjacent coastal watersheds on Cape Cod, MA, U.S.A. using multivariate clustering techniques. A distinct signature of AFFF contamination enriched in precursors with six perfluorinated carbons (C6) was identified in watersheds with an AFFF source, while others were enriched in C4 precursors. Principal component analysis of PFAS composition in impacted watersheds showed a decline in precursor composition relative to AFFF stocks and a corresponding increase in terminal perfluoroalkyl sulfonates with < C6 but not those with ≥ C6. Prior work shows that in AFFF stocks, all extractable organofluorine (EOF) can be explained by targeted PFAS and precursors inferred using Bayesian inference on the total oxidizable precursor assay. Using the same techniques for the first time in impacted watersheds, we find that only 24%-63% of the EOF can be explained by targeted PFAS and oxidizable precursors. Our work thus indicates the presence of large non-AFFF organofluorine sources in these coastal watersheds.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Alcanossulfonatos , Teorema de Bayes , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
5.
Environ Health Perspect ; 127(6): 67006, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170009

RESUMO

BACKGROUND: Between 2013 and 2015, concentrations of poly- and perfluoroalkyl substances (PFAS) in public drinking water supplies serving at least six million individuals exceeded the level set forth in the health advisory established by the U.S. Environmental Protection Agency. Other than data reported for contaminated sites, no systematic or prospective data exist on the relative source contribution (RSC) of drinking water to human PFAS exposures. OBJECTIVES: This study estimates the RSC of tap water to overall PFAS exposure among members of the general U.S. METHODS: We measured concentrations of 15 PFAS in home tap water samples collected in 1989-1990 from 225 participants in a nationwide prospective cohort of U.S. women: the Nurses' Health Study (NHS). We used a one-compartment toxicokinetic model to estimate plasma concentrations corresponding to tap water intake of PFAS. We compared modeled results with measured plasma PFAS concentrations among a subset of 110 NHS participants. RESULTS: Tap water perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) were statistically significant predictors of plasma concentrations among individuals who consumed [Formula: see text] cups of tap water per day. Modeled median contributions of tap water to measured plasma concentrations were: PFOA 12% (95% probability interval 11%-14%), PFNA 13% (8.7%-21%), linear perfluorooctanesulfonic acid (nPFOS) 2.2% (2.0%-2.5%), branched perfluorooctanesulfonic acid (brPFOS) 3.0% (2.5%-3.2%), and perfluorohexanesulfonic acid (PFHxS) 34% (29%-39%). In five locations, comparisons of PFASs in community tap water collected in the period 2013-2016 with samples from 1989-1990 indicated increases in quantifiable PFAS and extractable organic fluorine (a proxy for unquantified PFAS). CONCLUSIONS: Our results for 1989-1990 compare well with the default RSC of 20% used in risk assessments for legacy PFAS by many agencies. Future evaluation of drinking water exposures should incorporate emerging PFAS. https://doi.org/10.1289/EHP4093.


Assuntos
Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Água Potável/análise , Fluorocarbonos/sangue , Adulto , Idoso , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Estudos de Coortes , Feminino , Fluorocarbonos/análise , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Estados Unidos , Poluentes Químicos da Água/sangue
6.
Environ Sci Technol Lett ; 6(1): 38-43, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33283017

RESUMO

Exposures to poly- and perfluoroalkyl substances (PFASs) have been linked to metabolic disruption, immunotoxicity and cancer in humans. PFASs are known to be present in diverse consumer products including textiles and food packaging. Here we present a new method for quantifying the atomic percent fluorine (% F) in the surficial 0.01 µm of consumer products using X-ray photoelectron spectroscopy (XPS). The surface of food contact materials and textiles measured in this study contained up to 28% F and 45% F, respectively. PTFE tape was measured to demonstrate XPS accuracy and precision. Depth profiles of fluorine content in consumer products measured using XPS showed highest levels at the upper-most surface in contact with the surrounding environment and a decrease below the surface. PFASs released in methanol extracts and quantified using traditional liquid chromatography-tandem mass spectrometry typically accounted for <1% of the fluorine measured with XPS in consumer products. We conclude that XPS is a useful technique for characterizing PFASs in consumer products because it can precisely quantify the surficial fluorine content of materials. XPS also allows identification of CF2 and CF3 groups in materials and can elucidate the depth dependent distribution of fluorine in products.

7.
Environ Sci Technol Lett ; 6(3): 119-125, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33283018

RESUMO

Exposure to poly- and perfluoroalkyl substances (PFASs) has been linked to many negative health impacts in humans and wildlife. Unlike neutral hydrophobic organic pollutants, many PFASs are ionic and have been hypothesized to accumulate in both phospholipids and protein-rich tissues. Here we investigate the role of phospholipids for PFAS accumulation by analyzing associations among concurrent measurements of phospholipid, total protein, total lipid and 24 PFASs in the heart, muscle, brain, kidney, liver, blubber, placenta and spleen of North Atlantic pilot whales (Globicephala melas). The sum of 24 PFASs ( ∑ 24 PFAS ) was highest in the liver (median 260 ng g-1; interquartile range (IQR) 216-295 ng g-1) and brain (86.0; IQR 54.5-91.3 ng g-1), while phospholipid levels were highest in brain. The relative abundance of PFASs in the brain greatly increases with carbon chain lengths of 10 or greater, suggesting shorter-chained compounds may cross the blood-brain barrier less efficiently. Phospholipids were significant predictors of the tissue distribution of the longest-chained PFASs: perfluorodecanesulfonate (PFDS), perfluorododecanoate (PFDoA), perfluorotridecanoate (PFTrA), and perfluorotetradecanoic acid (PFTA) (rs = 0.5-0.6). In all tissues except the brain, each 1 mg g-1 increase in phospholipids led to a 12%-25% increase in the concentration of each PFAS. We conclude that partitioning to phospholipids is an important mechanism of bioaccumulation for long-chained PFASs in marine mammals.

8.
J Expo Sci Environ Epidemiol ; 29(2): 131-147, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30470793

RESUMO

Here, we review present understanding of sources and trends in human exposure to poly- and perfluoroalkyl substances (PFASs) and epidemiologic evidence for impacts on cancer, immune function, metabolic outcomes, and neurodevelopment. More than 4000 PFASs have been manufactured by humans and hundreds have been detected in environmental samples. Direct exposures due to use in products can be quickly phased out by shifts in chemical production but exposures driven by PFAS accumulation in the ocean and marine food chains and contamination of groundwater persist over long timescales. Serum concentrations of legacy PFASs in humans are declining globally but total exposures to newer PFASs and precursor compounds have not been well characterized. Human exposures to legacy PFASs from seafood and drinking water are stable or increasing in many regions, suggesting observed declines reflect phase-outs in legacy PFAS use in consumer products. Many regions globally are continuing to discover PFAS contaminated sites from aqueous film forming foam (AFFF) use, particularly next to airports and military bases. Exposures from food packaging and indoor environments are uncertain due to a rapidly changing chemical landscape where legacy PFASs have been replaced by diverse precursors and custom molecules that are difficult to detect. Multiple studies find significant associations between PFAS exposure and adverse immune outcomes in children. Dyslipidemia is the strongest metabolic outcome associated with PFAS exposure. Evidence for cancer is limited to manufacturing locations with extremely high exposures and insufficient data are available to characterize impacts of PFAS exposures on neurodevelopment. Preliminary evidence suggests significant health effects associated with exposures to emerging PFASs. Lessons learned from legacy PFASs indicate that limited data should not be used as a justification to delay risk mitigation actions for replacement PFASs.


Assuntos
Água Potável/normas , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Fluorocarbonos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Poluição Química da Água/prevenção & controle , Água Subterrânea/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA