Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(3): 197, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32100128

RESUMO

Organic dyes originating from liquid effluents from the textile industries are harmful to the environment. They are toxic and reduce the penetration of light into aquatic environments. In this study, a biosorbent was produced from the exuviae of Hermetia illucens (Linnaeus) larvae and used to remove organic anionic dyes from an aqueous medium. The solids were characterized in terms of thermal stability, chemical structure, morphology, and porosity using thermogravimetric (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption-desorption. There were studied the effects of pH and dosage of the adsorbent on the adsorption of the bromophenol blue dye, used as a model molecule. The adsorption kinetics was studied with Lagergren's pseudo-first-order rate model. The maximum adsorbed amount was 571 mg g-1 according to Langmuir's model. The adsorption process was evaluated as exothermic and spontaneous and was classified as physical adsorption. The prepared biosorbent was tested in five consecutive adsorption cycles achieving 99% dye removal at each stage. This demonstrated the maintenance of adsorption efficiency and desorption capacity. These results suggest that prepared biosorbent have potential applications in the treatment of effluents from textile industries.


Assuntos
Corantes , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Azul de Bromofenol , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Cinética , Larva , Espectroscopia de Infravermelho com Transformada de Fourier , Água
2.
Langmuir ; 21(10): 4362-9, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032848

RESUMO

We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA