Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554863

RESUMO

Radioactivity of Ra isotopes in natural waters is of serious concern. Control of 226Ra concentrations in tailings ponds, which store waste from U ore extraction processes, is an important issue in mill tailings management. In this study, we tested microbially formed Mn(IV) oxide as an adsorbent for removal of Ra in water treatment. Biogenic Mn(IV) oxide (BMO) was prepared using a Mn(II)-oxidizing fungus, Coprinopsis urticicola strain Mn-2. First, adsorption experiments of Sr and Ba, as surrogates for Ra, onto BMO were conducted in aqueous NaCl solution at pH 7. Distribution coefficients for Ba and Sr were estimated to be ∼106.5 and ∼104.3 mL/g, respectively. EXAFS analysis indicated that both Sr and Ba adsorbed in inner-sphere complexes on BMO, suggesting that Ra would adsorb in a similar way. From these findings, we expected that BMO would work effectively in removal of Ra from water. Then, BMO was applied to remove Ra from mine water collected from a U mill tailings pond. Just 7.6 mg of BMO removed >98% of the 226Ra from 3 L of mine water, corresponding to a distribution coefficient of 107.4 mL/g for Ra at pH ∼7. The obtained value was convincingly high for practical application of BMO in water treatment. At the same time, the high distribution coefficient indicates that Mn(IV) oxide can be an important carrier and host phase of Ra in the environment.


Assuntos
Óxidos , Rádio (Elemento) , Rádio (Elemento)/análise , Adsorção
2.
Environ Sci Technol ; 57(8): 3166-3175, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780547

RESUMO

Coprecipitation of radionuclides with barite has been studied to remove radionuclides from radioactive liquid waste because of its excellent removal efficiency; however, little information exists concerning the stability of the ions coprecipitated with barite. This study systematically investigated the stability of iodate, selenite, and selenate coprecipitated with barite via leaching tests. These oxyanions were gradually leached from the oxyanion-bearing barite into ultrapure water over time. Leaching of the oxyanions significantly increased in leaching solutions containing NaCl (pH 5.3), NaNO3 (pH 5.9), and Na2SO4 (pH 5.7). Conversely, leaching of the oxyanions was suppressed in KH2PO4 solution (pH 8.5), indicating that phosphate stabilized the oxyanion-bearing barite. The effect of phosphate treatment on oxyanion-bearing barite was further investigated. The results showed that the barite surface was modified with phosphate, and a thin surface layer of a barium phosphate-like structure was formed. The amount of oxyanions leached from the phosphate-treated samples into leaching solutions containing NaCl or NaNO3 was much lower than the amounts leached from the untreated barite samples into ultrapure water. The barite coprecipitation combined with subsequent phosphate treatment may be a promising method to efficiently remove iodate, selenite, and selenate from wastewater and stabilize them as barite coprecipitates.


Assuntos
Sulfato de Bário , Fosfatos , Ácido Selênico , Iodatos , Cloreto de Sódio , Ácido Selenioso , Água/química
3.
Chemosphere ; 266: 129104, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310356

RESUMO

Radioactive iodine (129I) is of great concern owing to its high mobility in the environment and long-term radiotoxicity. However, there is a lack of effective techniques for removing iodate (IO3-) from aqueous solution. This study aims to develop a new technique for removing radioactive iodate from contaminated solution by using barite (BaSO4). We examined the coprecipitation mechanism of iodate by barite at the molecular level to determine the optimum conditions for iodate removal. Results showed that iodate was effectively removed from the aqueous solution by coprecipitation even in the presence of competitive anions. Based on comparison of our method with previous techniques, the iodate removal efficiency by barite was determined to be about two orders of magnitude greater than that by hydrotalcite-like layered double hydroxide at 10 mmol L-1 Cl-. Extended X-ray absorption fine structure analysis indicated that the incorporated iodate was strongly bound to the crystal lattice of barite by substituting the sulfate site in the structure when the iodine concentration was low. The charge compensation problem from the IO3- substitution in the SO42- site was achieved by the substitution of Na+-IO3- pairs at the nearest Ba2+ site. Given the high removal efficiency and strong binding of iodate to barite, coprecipitation with barite is a promising tool for removing radioactive iodate from various aqueous solutions contaminated with iodate.


Assuntos
Iodatos , Neoplasias da Glândula Tireoide , Sulfato de Bário , Humanos , Radioisótopos do Iodo , Sulfatos
4.
J Hazard Mater ; 359: 307-315, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30045002

RESUMO

Strontium (Sr) removal from seawater has recently attracted attention from an environmental perspective after the Fukushima Nuclear Power Plant accident, but there is a lack of effective removal techniques for removing Sr from seawater. In the present study, we looked at the removal efficiency of Sr by using barite (BaSO4) under various experimental conditions to develop techniques for the direct removal of Sr from seawater. The effects of pH, saturation state, ionic strength, competitive ions, and [Ba2+]/[SO42-] ratio in the initial aqueous solution were examined. Among them, Sr uptake by barite was found to be dependent on pH, saturation state, and [Ba2+]/[SO42-] ratio in initial aqueous solution, showing that most of the aqueous Sr can be removed from the aqueous solution by adjusting these parameters. However, the effects of ionic strength and competitive ions were negligible, suggesting the effectiveness of its application to removal of Sr from seawater. Batch experiments were also conducted in a seawater system, and a rather high removal efficiency of Sr from seawater (more than 90%) was achieved. Considering its high removal and retention efficiency of Sr in seawater systems, barite is a reliable material for the removal of Sr from seawater.

6.
Environ Sci Technol ; 51(16): 9194-9201, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686015

RESUMO

In the present study, we explore a new application of Barite (BaSO4) as a sequestering phase for selenite (Se(IV)) and selenate (Se(VI)) ions from aqueous solutions because of the low solubility and high stability of Barite with its ability to selectively incorporate a large amount of various ions. The uptake of Se(IV) and Se(VI) during coprecipitation with Barite was investigated through batch experiments to understand the factors controlling effective removal of Se(IV) and Se(VI) from polluted water to Barite. The factors include (i) chemical affinity related to the degree of surface complexation between Barite surface and Se(IV)/Se(VI) ion and (ii) structural similarity related to the structural geometry of incorporated ions into the substituted site. The uptake of Se(IV) by Barite is dependent on pH, coexistent calcium ion, and sulfate concentration in the initial solution, possibly due to their effects on the chemical affinity and structural similarity. On the other hand, the uptake of Se(VI) by Barite was strongly dependent on sulfate concentration in the initial solution, which is only related to the structural similarity. This study describes the mechanisms for Se distribution between Barite and water, thereby providing a good estimate of its ability to effectively remove Se(IV) and Se(VI) from aqueous solutions under optimized experimental parameters examined here.


Assuntos
Sulfato de Bário , Ácido Selenioso , Ácido Selênico , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA