RESUMO
Monogenean trematodes, particularly those belonging to the Diplectanidae family, are significant metazoan parasites with substantial implications for aquaculture expansion. This study, investigatied the occurrence, prevalence, and pathological impact of Diplectanum spp. in European seabass (Dicentrarchus labrax) across three distinct Egyptian fish farms. During 2021-2022, we sampled 1800 European seabass (Dicentrarchus labrax) from three Egyptian fish farms (600 fish per farm). Farms 1 and 2 used semi-intensive earthen pond systems, while Farm 3 utilized an intensive floating cage system. Employing Clinical, post-mortem, parasitological, and molecular examination technique. Pathological lesions were identified, including skin and gill discoloration, emaciation, and internal organ abnormalities. Seasonal prevalence exhibited significant variations between farms, with highest rates observed in spring and Farm 3 reached an overall peak prevalence of 84.67â¯%. Parasitological examination distinguished two Diplectanum species morphologically, while molecular techniques exhibited limited specificity. Histopathology unveiled damage to gill, liver, spleen, kidney, and intestine, attributed to Diplectanum haptors including inflammation and internal bleeding, potentially leading to secondary infections. Molecular identification via PCR targeting ITS and 28SrDNA genes, revealing similar band sizes for the two Diplectanum species, indicating limited intraspecific genetic diversity. The study emphasizes investigating parasitic infections' prevalence and impact in aquaculture, necessitating robust molecular techniques for species differentiation. This study underscores the importance of investigating the prevalence and impact of parasitic infections in aquaculture. It highlights the need for robust molecular techniques to differentiate species. By focusing on Diplectanum spp. infections in D. labrax, the study offers valuable insights into managing parasites in aquaculture effectively.
Assuntos
Aquicultura , Bass , Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Bass/parasitologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Prevalência , Trematódeos/classificação , Trematódeos/genética , Egito/epidemiologia , Brânquias/parasitologia , Brânquias/patologiaRESUMO
MicroRNAs (miRNAs) play regulatory roles in several diseases. In schistosomiasis, the main pathological changes are caused by the granulomatous reaction induced by egg deposition. We aimed to study the changes in host miRNA-223 and miRNA-146b expression in relation to egg deposition and development of hepatic pathology in murine schistosomiasis mansoni. Blood and liver tissue samples were collected from non-infected mice (group I), S. mansoni-infected mice at the 4th, 8th, and 12th weeks post-infection (p.i.) (groups II-IV), and 4 weeks after praziquantel treatment (group V). The collected samples were processed for RNA extraction, reverse transcription, and real-time PCR analysis of miRNA-223 and miRNA-146b. miRNAs' relative expression was estimated by the ΔΔCt method. Liver tissue samples were examined for egg count estimation and histopathological evaluation. Results revealed that miRNA-223 was significantly downregulated in liver tissues 8 and 12 weeks p.i., whereas miRNA-146b expression increased gradually with the progression of infection with a significantly higher level at week 12 p.i. compared to week 4 p.i. Serum expression levels nearly followed the same pattern as the tissue levels. The dysregulated expression of miRNAs correlated with liver egg counts and was more obvious with the demonstration of chronic granulomas, fibrous transformation, and distorted hepatic architecture 12 weeks p.i. Restoration of normal expression levels was observed 4 weeks after treatment. Collectively, these findings provide new insights for in-depth understanding of host-parasite interaction in schistosomiasis and pave a new way for monitoring the progress of hepatic pathology before and after treatment.
Assuntos
MicroRNAs , Esquistossomose mansoni , Esquistossomose , Animais , Fígado/parasitologia , Camundongos , MicroRNAs/genética , Schistosoma mansoni/genética , Esquistossomose/patologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/patologiaRESUMO
INTRODUCTION AND AIM: Blastocystis is a common enteric parasite, having a worldwide distribution. Many antimicrobial agents are effective against it, yet side effects and drug resistance have been reported. Thus, ongoing trials are being conducted for exploring anti-Blastocystis alternatives. Proteases are attractive anti-protozoal drug targets, having documented roles in Blastocystis. Serine proteases are present in both hepatitis C virus and Blastocystis. Since drug repositioning is quite trendy, the in vitro efficacy of simeprevir (SMV), an anti-hepatitis serine protease inhibitor, against Blastocystis was investigated in the current study. METHODS: Stool samples were collected from patients, Alexandria, Egypt. Concentrated stools were screened using direct smears, trichrome, and modified Ziehl-Neelsen stains to exclude parasitic co-infections. Positive stool isolates were cultivated, molecularly subtyped for assessing the efficacy of three SMV doses (100,150, and 200 µg/ml) along 72 hours (h), on the most common subtype, through monitoring parasite growth, viability, re-culture, and also via ultrastructure verification. The most efficient dose and duration were later tested on other subtypes. RESULTS: Results revealed that Blastocystis was detected in 54.17% of examined samples. Molecularly, ST3 predominated (62%), followed by ST1 (8.6%) and ST2 (3.4%). Ascending concentrations of SMV progressively inhibited growth, viability, and re-culture of treated Blastocystis, with a non-statistically significant difference when compared to the therapeutic control metronidazole (MTZ). The most efficient dose and duration against ST3 was 150 µg/ml for 72 h. This dose inhibited the growth of ST3, ST1, and ST2 with percentages of 95.19%, 94.83%, and 94.74%, successively and viability with percentages of 98.30%, 98.09%, and 97.96%, successively. This dose abolished Blastocystis upon re-culturing. Ultra-structurally, SMV induced rupture of Blastocystis cell membrane leading to necrotic death, versus the reported apoptotic death caused by MTZ. In conclusion, 150 µg/ml SMV for 72 h proved its efficacy against ST1, ST2, and ST3 Blastocystis, thus sparing the need for pre-treatment molecular subtyping in developing countries.