Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Structure ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38490206

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

2.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328042

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

3.
Sci Data ; 10(1): 204, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045837

RESUMO

More than 61,000 proteins have up-to-date correspondence between their amino acid sequence (UniProtKB) and their 3D structures (PDB), enabled by the Structure Integration with Function, Taxonomy and Sequences (SIFTS) resource. SIFTS incorporates residue-level annotations from many other biological resources. SIFTS data is available in various formats like XML, CSV and TSV format or also accessible via the PDBe REST API but always maintained separately from the structure data (PDBx/mmCIF file) in the PDB archive. Here, we extended the wwPDB PDBx/mmCIF data dictionary with additional categories to accommodate SIFTS data and added the UniProtKB, Pfam, SCOP2, and CATH residue-level annotations directly into the PDBx/mmCIF files from the PDB archive. With the integrated UniProtKB annotations, these files now provide consistent numbering of residues in different PDB entries allowing easy comparison of structure models. The extended dictionary yields a more consistent, standardised metadata description without altering the core PDB information. This development enables up-to-date cross-reference information at the residue level resulting in better data interoperability, supporting improved data analysis and visualisation.

4.
J Mol Biol ; 435(14): 168021, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828268

RESUMO

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described.


Assuntos
Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Software
5.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
6.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352173

RESUMO

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Assuntos
Amiloide , Príons , Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas , Imageamento por Ressonância Magnética
7.
Protein Sci ; 31(10): e4439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173162

RESUMO

The archiving and dissemination of protein and nucleic acid structures as well as their structural, functional and biophysical annotations is an essential task that enables the broader scientific community to conduct impactful research in multiple fields of the life sciences. The Protein Data Bank in Europe (PDBe; pdbe.org) team develops and maintains several databases and web services to address this fundamental need. From data archiving as a member of the Worldwide PDB consortium (wwPDB; wwpdb.org), to the PDBe Knowledge Base (PDBe-KB; pdbekb.org), we provide data, data-access mechanisms, and visualizations that facilitate basic and applied research and education across the life sciences. Here, we provide an overview of the structural data and annotations that we integrate and make freely available. We describe the web services and data visualization tools we offer, and provide information on how to effectively use or even further develop them. Finally, we discuss the direction of our data services, and how we aim to tackle new challenges that arise from the recent, unprecedented advances in the field of structure determination and protein structure modeling.


Assuntos
Ácidos Nucleicos , Proteínas , Bases de Dados de Proteínas , Europa (Continente) , Conformação Proteica , Proteínas/química
8.
J Colloid Interface Sci ; 594: 857-863, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794407

RESUMO

Supramolecular chemistry has garnered important interest in recent years toward improving therapeutic efficacy via drug delivery approaches. Although self-assemblies have been deeply investigated, the design of novel drugs leveraging supramolecular chemistry is less known. In this contribution, we show that a Low Molecular Weight Gel (LMWG) can elicit cancer cell apoptosis. This biological effect results from the unique supramolecular properties of a bolaamphiphile-based gelator, which allow for strong interaction with the lipid membrane. This novel supramolecular-drug paradigm opens up new possibilities for therapeutic applications targeting membrane lipids.


Assuntos
Sistemas de Liberação de Medicamentos , Furanos , Géis , Piridonas
9.
ACS Chem Neurosci ; 11(20): 3358-3365, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32915532

RESUMO

Somatostatin (SST14) is strongly related to Alzheimer's disease (AD), as its levels decline during aging, it regulates the proteolytic degradation of the amyloid beta peptide (Aß), and it binds to Aß oligomers in vivo. Recently, the 3D structure of a membrane-associated ß-sheet pore-forming tetramer (ßPFOAß(1-42) tetramer) has been reported. Here, we show that SST14 binds selectively to the ßPFOAß(1-42) tetramer with a KD value of ∼40 µM without binding to monomeric Aß(1-42). Specific NMR chemical shift perturbations, observed during titration of SST14, define a binding site in the ßPFOAß(1-42) tetramer and are in agreement with a 2:1 stoichiometry determined by both native mass spectroscopy and isothermal titration calorimetry. These results enabled us to perform driven docking and model the binding mode for the interaction. The present study provides additional evidence on the relation between SST14 and the amyloid cascade and positions the ßPFOAß(1-42) tetramer as a relevant aggregation form of Aß and as a potential target for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Fragmentos de Peptídeos , Somatostatina
10.
Curr Top Microbiol Immunol ; 427: 109-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31974760

RESUMO

Among the Gram-negative bacterial secretion systems, type III secretion systems (T3SS) possess a unique extracellular molecular apparatus called the needle. This macromolecular protein assembly is a nanometre-size filament formed by the helical arrangement of hundreds of copies of a single, small protein, which is highly conserved between T3SSs from animal to plant bacterial pathogens. The needle filament forms a hollow tube with a channel ~20 Å in diameter that serves as a conduit for proteins secreted into the targeted host cell. In the past ten years, technical breakthroughs in biophysical techniques such as cryo-electron microscopy (cryo-EM) and solid-state NMR (SSNMR) spectroscopy have uncovered atomic resolution details about the T3SS needle assembly. Several high-resolution structures of Salmonella typhimurium and Shigella flexneri T3SS needles have been reported demonstrating a common structural fold. These structural models have been used to explain the active role of the needle in transmitting the host-cell contact signal from the tip to the base of the T3SS through conformational changes as well as during the injection of effector proteins. In this chapter, we summarize the current knowledge about the structure and the role of the T3SS needle during T3SS assembly and effector secretion.


Assuntos
Sistemas de Secreção Tipo III/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/química , Shigella flexneri/química , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/ultraestrutura
11.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691821

RESUMO

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Assuntos
Bases de Dados de Proteínas , Software , Análise por Conglomerados , Confiabilidade dos Dados , Europa (Continente) , Conformação Proteica , Interface Usuário-Computador
12.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546607

RESUMO

WWP2 is an E3 ubiquitin ligase that differentially regulates the contextual tumour suppressor/progressor TGFß signalling pathway by alternate isoform expression. WWP2 isoforms select signal transducer Smad2/3 or inhibitor Smad7 substrates for degradation through different compositions of protein-protein interaction WW domains. The WW4 domain-containing WWP2-C induces Smad7 turnover in vivo and positively regulates the metastatic epithelial-mesenchymal transition programme. This activity and the overexpression of these isoforms in human cancers make them candidates for therapeutic intervention. Here, we use NMR spectroscopy to solve the solution structure of the WWP2 WW4 domain and observe the binding characteristics of Smad7 substrate peptide. We also reveal that WW4 has an enhanced affinity for a Smad7 peptide phosphorylated at serine 206 adjacent to the PPxY motif. Using the same approach, we show that the WW3 domain also binds Smad7 and has significantly enhanced Smad7 binding affinity when expressed in tandem with the WW4 domain. Furthermore, and relevant to these biophysical findings, we present evidence for a novel WWP2 isoform (WWP2C-ΔHECT) comprising WW3-WW4 tandem domains and a truncated HECT domain that can inhibit TGFß signalling pathway activity, providing a further layer of complexity and feedback to the WWP2 regulatory apparatus. Collectively, our data reveal a structural platform for Smad substrate selection by WWP2 isoform WW domains that may be significant in the context of WWP2 isoform switching linked to tumorigenesis.


Assuntos
Proteína Smad7/química , Proteína Smad7/metabolismo , Ubiquitina-Proteína Ligases/química , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Transdução de Sinais , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Domínios WW/genética
13.
FASEB J ; 33(11): 12146-12163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370706

RESUMO

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Assuntos
Proteínas Amiloidogênicas/química , Bacillus/fisiologia , Proteínas de Bactérias/química , Biofilmes , Espectroscopia de Ressonância Magnética , Metaloproteases/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
14.
PLoS Biol ; 17(7): e3000351, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260457

RESUMO

Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Complexos Multiproteicos/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/genética , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Mutação , Conformação Proteica , Transporte Proteico/genética , Salmonella typhimurium/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/ultraestrutura
15.
Front Microbiol ; 10: 573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001211

RESUMO

The type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined in vivo, in vitro, and in silico approaches to characterize the Pseudomonas aeruginosa T3SS needle and its major component PscF. Using a combination of mutagenesis, phenotypic analyses, immunofluorescence, proteolysis, mass spectrometry, atomic force microscopy, electron microscopy, and molecular modeling, we propose a model of the P. aeruginosa needle that exposes the N-terminal region of each PscF monomer toward the outside of the filament, while the core of the fiber is formed by the C-terminal helix. Among mutations introduced into the needle protein PscF, D76A, and P47A/Q54A caused a defect in the assembly of the needle on the bacterial surface, although the double mutant was still cytotoxic on macrophages in a T3SS-dependent manner and formed filamentous structures in vitro. These results suggest that the T3SS needle of P. aeruginosa displays an architecture that is similar to that of other bacterial needles studied to date and highlight the fact that small, targeted perturbations in needle assembly can inhibit T3SS function. Therefore, the T3SS needle represents an excellent drug target for small molecules acting as virulence blockers that could disrupt pathogenesis of a broad range of bacteria.

16.
Front Mol Biosci ; 5: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725595

RESUMO

We have recently reported on the preparation of a membrane-associated ß-barrel Pore-Forming Aß42 Oligomer (ßPFOAß42). It corresponds to a stable and homogeneous Aß42 oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a ß-barrel arrangement. As a follow-up of this work, we aim to establish ßPFOAß42's relevance in Alzheimer's disease (AD). However, ßPFOAß42 is formed under dodecyl phosphocholine (DPC) micelle conditions-intended to mimic the hydrophobic environment of membranes-which are dynamic. Consequently, dilution of the ßPFOAß42/DPC complex in a detergent-free buffer leads to dispersion of the DPC molecules from the oligomer surface, leaving the oligomer without the hydrophobic micelle belt that stabilizes it. Since dilution is required for any biological test, transfer of ßPFOAß42 from DPC micelles into another hydrophobic biomimetic membrane environment, that remains associated with ßPFOAß42 even under high dilution conditions, is a requisite for the validation of ßPFOAß42 in AD. Here we describe conditions for exchanging DPC micelles with amphipols (APols), which are amphipathic polymers designed to stabilize membrane proteins in aqueous solutions. APols bind in an irreversible but non-covalent manner to the hydrophobic surface of membrane proteins preserving their structure even under extreme dilution conditions. We tested three types of APols with distinct physical-chemical properties and found that the ßPFOAß42/DPC complex can only be trapped in non-ionic APols (NAPols). The characterization of the resulting ßPFOAß42/NAPol complex by biochemical tools and structural biology techniques allowed us to establish that the oligomer structure is maintained even under high dilution. Based on these findings, this work constitutes a first step towards the in vivo validation of ßPFOAß42 in AD.

17.
J Biomol NMR ; 70(3): 177-185, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29502224

RESUMO

We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C-13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 µg using a MAS frequency of 70 kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Hα resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Amiloide/química , Isótopos de Carbono , Príons/química
18.
Sci Rep ; 8(1): 1960, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386631

RESUMO

Tarp (translocated actin recruiting phosphoprotein) is an effector protein common to all chlamydial species that functions to remodel the host-actin cytoskeleton during the initial stage of infection. In C. trachomatis, direct binding to actin monomers has been broadly mapped to a 100-residue region (726-825) which is predicted to be predominantly disordered, with the exception of a ~10-residue α-helical patch homologous to other WH2 actin-binding motifs. Biophysical investigations demonstrate that a Tarp726-825 construct behaves as a typical intrinsically disordered protein; within it, NMR relaxation measurements and chemical shift analysis identify the ten residue WH2-homologous region to exhibit partial α-helix formation. Isothermal titration calorimetry experiments on the same construct in the presence of monomeric G-actin show a well defined binding event with a 1:1 stoichiometry and Kd of 102 nM, whilst synchrotron radiation circular dichroism spectroscopy suggests the binding is concomitant with an increase in helical secondary structure. Furthermore, NMR experiments in the presence of G-actin indicate this interaction affects the proposed WH2-like α-helical region, supporting results from in silico docking calculations which suggest that, when folded, this α-helix binds within the actin hydrophobic cleft as seen for other actin-associated proteins.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Síncrotrons
19.
J Agric Food Chem ; 66(1): 351-358, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29231723

RESUMO

(+)-2,3-trans-3,4-cis-Leucocyanidin was produced by acidic epimerization of (+)-2,3-trans-3,4-trans-leucocyanidin synthesized by reduction of (+)-dihydroquercetin with NaBH4, and structures of the two stereoisomers purified by C18- and phenyl-reverse-phase high-performance liquid chromatography (HPLC) were confirmed by NMR spectroscopy. We confirm that only 3,4-cis-leucocyanidin is used by leucoanthocyanidin reductase as substrate. The two stereoisomers are quite stable in aqueous solution at -20 °C. Characterization of the two stereoisomers was also performed using electrospray ionization tandem mass spectrometry (ESI-MS/MS), and we discuss here for the first time the corresponding MS/MS fragmentation pathways, which are clearly distinct. The main difference is that of the mode of dehydration of the 3,4-diol in positive ionization mode, which involves a loss of hydroxyl group at either C3 or C4 for the 3,4-cis isomer but only at C3 for the 3,4-trans isomer. Tandem mass spectrometry therefore proves useful as a complementary methodology to NMR to identify each of the two stereoisomers.


Assuntos
Flavonoides/química , Espectrometria de Massas em Tandem/métodos , Estrutura Molecular , Estereoisomerismo
20.
J Vis Exp ; (127)2017 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-28994783

RESUMO

Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13C/15N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA