Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979285

RESUMO

In many cell types, disparate non-centrosomal microtubule-organizing centers (ncMTOCs) replace functional centrosomes and serve the unique needs of the cell types in which they are formed. In Drosophila fat body cells (adipocytes), an ncMTOC is organized on the nuclear surface. This perinuclear ncMTOC is anchored by Msp300, encoded by one of two Nesprin-encoding genes in Drosophila. Msp300 and the spectraplakin short stop (shot) are co-dependent for localization to the nuclear envelope to generate the ncMTOC where they recruit the microtubule minus-end stabilizer Patronin (CAMSAP). The fat body perinuclear ncMTOC requires Patronin, Ninein, and Msps (ortholog of ch-TOG), but does not require γ-tubulin for MT assembly. The Msp300 gene is complex, encoding at least eleven isoforms. Here we show that two Msp300 isoforms, Msp300-PE and -PG, are required and only one, Msp300-PE, appears sufficient for generation of the ncMTOC. Loss of Msp300-PE,-PG retains the presence of the other isoforms at the nuclear surface, indicating that they are not sufficient to generate the ncMTOC. Loss of Msp300-PE,-PG results in severe loss of localization of shot and Patronin, and disruption of the MT array. This results in nuclear mispositioning and loss of endosomal trafficking. Msp300-PE has an unusual domain structure including a lack of a KASH domain and very few spectrin repeats and appears therefore to have a highly derived function suited to generating an ncMTOC on the nuclear surface.

2.
Endocrinology ; 165(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058908

RESUMO

The pancreatic islet is the functional and structural unit of the pancreatic endocrine portion. Islet remodeling occurs in both normal development and pathogenesis of type 1 (T1D) and type 2 diabetes (T2D). However, accurately quantifying changes in islet cellular makeup and hormone expressions poses significant challenges due to large intra- and inter-donor heterogeneity and the limited scalability of traditional methods such as immunostaining. The cytometry by time-of-flight (CyTOF) technology enables simultaneous quantification of more than 30 protein markers at single-cell resolution in a high-throughput fashion. Moreover, with distinct DNA and viability markers, single live cells can be explicitly selected in CyTOF. Here, leveraging the CyTOF data generated by the Human Pancreas Analysis Program, we characterized more than 12 million islet cells from 71 donors. Our data revealed continued age-related changes in islet endocrine cell compositions, but the maturity of endocrine cells is reached by 3 years of age. We also observed significant changes in beta cell numbers and key protein expressions, along with a significant increase in bihormonal cells in T1D donors. In contrast, T2D donors exhibited minimal islet remodeling events. Our data shine a light on the islet dynamics during development and diabetes pathogenesis and suggest divergent pathogenesis processes of T1D and T2D. Our comprehensive approach not only elucidates islet plasticity but also establishes a foundation for integrated CyTOF analysis in islet biology and beyond.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/metabolismo , Adulto , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Masculino , Feminino , Adolescente , Pessoa de Meia-Idade , Criança , Adulto Jovem , Pré-Escolar , Citometria de Fluxo/métodos , Lactente , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/citologia , Idoso , Análise de Célula Única/métodos
3.
BMC Genomics ; 25(1): 427, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689254

RESUMO

BACKGROUND: Current approaches to profile the single-cell transcriptomics of human pancreatic endocrine cells almost exclusively rely on freshly isolated islets. However, human islets are limited in availability. Furthermore, the extensive processing steps during islet isolation and subsequent single cell dissolution might alter gene expressions. In this work, we report the development of a single-nucleus RNA sequencing (snRNA-seq) approach with targeted islet cell enrichment for endocrine-population focused transcriptomic profiling using frozen archival pancreatic tissues without islet isolation. RESULTS: We cross-compared five nuclei isolation protocols and selected the citric acid method as the best strategy to isolate nuclei with high RNA integrity and low cytoplasmic contamination from frozen archival human pancreata. We innovated fluorescence-activated nuclei sorting based on the positive signal of NKX2-2 antibody to enrich nuclei of the endocrine population from the entire nuclei pool of the pancreas. Our sample preparation procedure generated high-quality single-nucleus gene-expression libraries while preserving the endocrine population diversity. In comparison with single-cell RNA sequencing (scRNA-seq) library generated with live cells from freshly isolated human islets, the snRNA-seq library displayed comparable endocrine cellular composition and cell type signature gene expression. However, between these two types of libraries, differential enrichments of transcripts belonging to different functional classes could be observed. CONCLUSIONS: Our work fills a technological gap and helps to unleash frozen archival pancreatic tissues for molecular profiling targeting the endocrine population. This study opens doors to retrospective mappings of endocrine cell dynamics in pancreatic tissues of complex histopathology. We expect that our protocol is applicable to enrich nuclei for transcriptomics studies from various populations in different types of frozen archival tissues.


Assuntos
Núcleo Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Ilhotas Pancreáticas , Proteínas Nucleares , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica/métodos , Pâncreas/metabolismo , Pâncreas/citologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA