Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(4): e55678, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876467

RESUMO

Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Animais , Humanos , DNA Mitocondrial/genética , Edição de Genes/métodos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Doenças Mitocondriais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA