Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Br Dent J ; 220(6): 287-8, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27012340

RESUMO

This article reports a brief overview of the risks associated with lower third molar extractions, and the claims that coronectomy may be useful as a treatment modality in managing some aspects of those risks. It discusses the position in terms of consent, and reports that some cases suggest that clinicians who do not offer coronectomy in appropriate circumstances may be vulnerable to litigation.


Assuntos
Consentimento Livre e Esclarecido , Dente Serotino/cirurgia , Coroa do Dente/cirurgia , Humanos , Consentimento Livre e Esclarecido/legislação & jurisprudência , Imperícia/legislação & jurisprudência , Fatores de Risco , Extração Dentária/efeitos adversos , Traumatismos do Nervo Trigêmeo/etiologia
2.
Mol Cell ; 8(3): 517-29, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11583615

RESUMO

A nuclear GTPase, Nug1p, was identified in a genetic screen for components linked to 60S ribosomal subunit export. Nug1p cosedimented with nuclear 60S preribosomes and was required for subunit export to the cytoplasm. Tagged Nug1p coprecipitated with proteins of the 60S subunit, late precursors to the 25S and 5.8S rRNAs, and at least 21 nonribosomal proteins. These included a homologous nuclear GTPase, Nug2p, the Noc2p/Noc3p heterodimer, Rix1p, and Rlp7p, each of which was implicated in 60S subunit export. Other known ribosome synthesis factors and proteins of previously unknown function, including the 559 kDa protein Ylr106p, also copurified. Eight of these proteins were copurified with nuclear pore complexes, suggesting that this complex represents the transport intermediate for 60S subunit export.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Northern Blotting , Centrifugação com Gradiente de Concentração , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Genes Reporter/genética , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Temperatura , Transformação Genética
3.
EMBO J ; 20(19): 5480-90, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11574480

RESUMO

Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.


Assuntos
Transporte Ativo do Núcleo Celular , Nucléolo Celular/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae , Compartimento Celular , Corpos Enovelados/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae , Fatores de Processamento de Serina-Arginina
4.
EMBO J ; 20(14): 3695-704, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-11447111

RESUMO

Ribosomal precursor particles are assembled in the nucleolus before export into the cytoplasm. Using a visual assay for nuclear accumulation of 60S subunits, we have isolated several conditional-lethal strains with defects in ribosomal export (rix mutants). Here we report the characterization of a mutation in an essential gene, RIX7, which encodes a novel member of the AAA ATPase superfamily. The rix7-1 temperature-sensitive allele carries a point mutation that causes defects in pre-rRNA processing, biogenesis of 60S ribosomal subunits, and their subsequent export into the cytoplasm. Rix7p, which associates with 60S ribosomal precursor particles, localizes throughout the nucleus in exponentially growing cells, but concentrates in the nucleolus in stationary phase cells. When cells resume growth upon shift to fresh medium, Rix7p-green fluorescent protein exhibits a transient perinuclear location. We propose that a nuclear AAA ATPase is required for restructuring nucleoplasmic 60S pre-ribosomal particles to make them competent for nuclear export.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/enzimologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Sequência de Bases , Transporte Biológico , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Primers do DNA , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Mutação , Proteínas Nucleares , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nat Rev Mol Cell Biol ; 2(7): 514-20, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11433365

RESUMO

Structural analyses of the large and small ribosomal subunits have allowed us to think about how they work in more detail than ever before. The mechanisms that underlie ribosomal synthesis, translocation and catalysis are now being unravelled, with practical implications for the design of antibiotics.


Assuntos
Bactérias/genética , Ribossomos/metabolismo , Células Eucarióticas/fisiologia , Humanos , Estrutura Molecular , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Biossíntese de Proteínas/fisiologia , RNA/metabolismo
6.
Curr Opin Cell Biol ; 13(3): 320-5, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11343902

RESUMO

Nuclear RNA-binding proteins can record pre-mRNA processing events in the structure of messenger ribonucleoprotein particles (mRNPs). During initial rounds of translation, the mature mRNP structure is established and is monitored by mRNA surveillance systems. Competition for the cap structure links translation and subsequent mRNA degradation, which may also involve multiple deadenylases.


Assuntos
Processamento Alternativo/fisiologia , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Iniciação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia , Leveduras/metabolismo
7.
Cell ; 105(4): 499-509, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11371346

RESUMO

How pre-ribosomes temporally and spatially mature during intranuclear biogenesis is not known. Here, we report three nucleolar proteins, Noc1p to Noc3p, that are required for ribosome maturation and transport. They can be isolated in two distinct complexes: Noc1p/Noc2p associates with 90S and 66S pre-ribosomes and is enriched in the nucleolus, and Noc2p/Noc3p associates with 66S pre-ribosomes and is mainly nucleoplasmic. Mutation of each Noc protein impairs intranuclear transport of 60S subunits at different stages and inhibits pre-rRNA processing. Overexpression of a conserved domain common to Noc1p and Noc3p is dominant-negative for cell growth, with a defect in nuclear 60S subunit transport, but no inhibition of pre-rRNA processing. We propose that the dynamic interaction of Noc proteins is crucial for intranuclear movement of ribosomal precursor particles, and, thereby represent a prerequisite for proper maturation.


Assuntos
Nucléolo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/genética , Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Compartimento Celular/fisiologia , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Genótipo , Proteínas de Fluorescência Verde , Indicadores e Reagentes/farmacocinética , Proteínas Luminescentes/farmacocinética , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos
8.
Mol Cell Biol ; 21(10): 3405-15, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11313466

RESUMO

Nuclear export of ribosomes requires a subset of nucleoporins and the Ran system, but specific transport factors have not been identified. Using a large subunit reporter (Rpl25p-eGFP), we have isolated several temperature-sensitive ribosomal export (rix) mutants. One of these corresponds to the ribosomal protein Rpl10p, which interacts directly with Nmd3p, a conserved and essential protein associated with 60S subunits. We find that thermosensitive nmd3 mutants are impaired in large subunit export. Strikingly, Nmd3p shuttles between the nucleus and cytoplasm and is exported by the nuclear export receptor Xpo1p. Moreover, we show that export of 60S subunits is Xpo1p dependent. We conclude that nuclear export of 60S subunits requires the nuclear export sequence-containing nonribosomal protein Nmd3p, which directly binds to the large subunit protein Rpl10p.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Carioferinas , Proteínas de Ligação a RNA , Receptores Citoplasmáticos e Nucleares , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteína Exportina 1
9.
J Biol Chem ; 276(9): 6177-84, 2001 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-11110791

RESUMO

The yeast exosome is a complex of 3' --> 5' exoribonucleases. Sequence analysis identified putative human homologues for exosome components, although several were found only as expressed sequence tags. Here we report the cloning of full-length cDNAs, which encode putative human homologues of the Rrp40p, Rrp41p, and Rrp46p components of the exosome. Recombinant proteins were expressed and used to raise rabbit antisera. In Western blotting experiments, these decorated HeLa cell proteins of the predicted sizes. All three human proteins were enriched in the HeLa cells nucleus and nucleolus, but were also clearly detected in the cytoplasm. Size exclusion chromatography revealed that hRrp40p, hRrp41p, and hRrp46p were present in a large complex. This cofractionated with the human homologues of other exosome components, hRrp4p and PM/Scl-100. Anti-PM/Scl-positive patient sera coimmunoprecipitated hRrp40p, hRrp41p, and hRrp46p demonstrating their physical association. The immunoprecipitated complex exhibited 3' --> 5' exoribonuclease activity in vitro. hRrp41p was expressed in yeast and shown to suppress the lethality of genetic depletion of yeast Rrp41p. We conclude that hRrp40p, hRrp41p, and hRrp46p represent novel components of the human exosome complex.


Assuntos
Exorribonucleases/análise , Animais , Sequência de Bases , Núcleo Celular/química , Clonagem Molecular , Citoplasma/química , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo , Células HeLa , Humanos , Dados de Sequência Molecular , Peso Molecular , Testes de Precipitina , Proteínas de Ligação a RNA , Coelhos
11.
Nat Struct Biol ; 7(10): 843-6, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11017189

RESUMO

The exosome complex of 3'-->5' exoribonucleases functions in both the precise processing of 3' extended precursor molecules to mature stable RNAs and the complete degradation of other RNAs. Both processing and degradative activities of the exosome depend on additional cofactors, notably the putative RNA helicases Mtr4p and Ski2p. It is not known how these factors regulate exosome function or how the exosome distinguishes RNAs destined for processing events from substrates that are to be completely degraded. Here we review the available data concerning the modes of action of the exosome and relate these to possible structural arrangements for the complex. As no detailed structural data are yet available for the exosome complex, or any of its constituent enzymes, this discussion will rely heavily on rather speculative models.


Assuntos
Exorribonucleases/química , Regulação Alostérica , Exorribonucleases/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
12.
Cell ; 102(6): 765-75, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-11030620

RESUMO

We have identified a nuclear pathway that rapidly degrades unspliced pre-mRNAs in yeast. This involves 3'-->5' degradation by the exosome complex and 5'-->3' degradation by the exonuclease Rat1p. 3'-->5' degradation is normally the major pathway and is regulated in response to carbon source. Inhibition of pre-mRNA degradation resulted in increased levels of pre-mRNAs and spliced mRNAs. When splicing was inhibited by mutation of a splicing factor, inhibition of turnover resulted in 20- to 50-fold accumulation of pre-mRNAs, accompanied by increased mRNA production. Splicing of a reporter construct with a 3' splice site mutation was also increased on inhibition of turnover, showing competition between degradation and splicing. We propose that nuclear pre-mRNA turnover represents a novel step in the regulation of gene expression.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae , Leveduras/genética , Animais , Núcleo Celular/enzimologia , Núcleo Celular/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genótipo , Mamíferos , Mutação/fisiologia
13.
Mol Cell Biol ; 20(19): 7238-46, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10982841

RESUMO

Putative RNA helicases are involved in most aspects of gene expression. All previously characterized members of the DEAH-box family of putative RNA helicases are involved in pre-mRNA splicing. Here we report the analysis of two novel DEAH-box RNA helicases, Dhr1p and Dhr2p, that were found to be predominantly nucleolar. Both genes are essential for viability, and MET-regulated alleles were therefore created. Depletion of Dhr1p or Dhr2p had no detectable effect on pre-mRNA splicing in vivo or in vitro. Both Dhr1p and Dhr2p were, however, required for 18S rRNA synthesis. Depletion of Dhr2p inhibited pre-rRNA cleavage at sites A(0), A(1), and A(2), while Dhr1p depletion inhibited cleavage at sites A(1) and A(2). No coprecipitation of snoRNAs was detected with ProtA-Dhr2p, but Dhr1p-ProtA was stably associated with the U3 snoRNA. Depletion of Dhr1p inhibited processing steps that require base pairing of U3 to the 5' end of the 18S rRNA. We speculate that Dhr1p is targeted to the preribosomal particles by the U3-18S rRNA interaction and is required for the structural reorganization of the rRNA during formation of the central pseudoknot.


Assuntos
RNA Helicases/isolamento & purificação , Precursores de RNA/metabolismo , Splicing de RNA , RNA Fúngico/metabolismo , RNA Ribossômico 18S/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Bases , Nucléolo Celular/metabolismo , RNA Helicases DEAD-box , Deleção de Genes , Humanos , Recém-Nascido , Substâncias Macromoleculares , Dados de Sequência Molecular , Família Multigênica , RNA Helicases/genética , RNA Helicases/metabolismo , Sequências Reguladoras de Ácido Nucleico , Esferoplastos/metabolismo , Especificidade por Substrato
14.
Mol Cell Biol ; 20(15): 5415-24, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10891482

RESUMO

Almost all small eukaryotic RNAs are processed from transiently stabilized 3'-extended forms. A key question is how and why such intermediates are stabilized and how they can then be processed to the mature RNA. Here we report that yeast U3 is also processed from a 3'-extended precursor. The major 3'-extended forms of U3 (U3-3'I and -II) lack the cap trimethylation present in mature U3 and are not associated with small nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p leads to the loss of mature U3 but increases the level of U3-3'I and -II, indicating a requirement for the snoRNP proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3'I and -II do not extend to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A resulted in coprecipitation of both U3-3'I and -II. Deletion of LHP1, which is nonessential, led to the loss of U3-3'I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3'I and -II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3'-->5' exonucleases.


Assuntos
Exorribonucleases , Proteínas Fúngicas/metabolismo , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Bases , Endorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Testes de Precipitina , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease III , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/imunologia , Proteína Estafilocócica A/metabolismo
15.
Science ; 288(5470): 1385-9, 2000 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-10827942

RESUMO

Structures visible within the eukaryotic nucleus have fascinated generations of biologists. Recent data show that these structures form in response to gene expression and are highly dynamic in living cells. RNA processing and assembly require many factors but the nucleus apparently lacks any active transport system to deliver these to the RNAs. Instead, processing factors move by diffusion but are concentrated by transient association with functionally related components. At sites of high activity this gives rise to visible structures, with components in dynamic equilibrium with the surrounding nucleoplasm. Processing factors are recruited from this pool by cooperative binding to RNA substrates.


Assuntos
Núcleo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Transcrição Gênica , Animais , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Difusão , Humanos , Proteínas Nucleares/metabolismo , RNA/genética , Precursores de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
16.
Curr Opin Genet Dev ; 10(2): 193-8, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10753781

RESUMO

During the past two years, the role of the proteins HuR and hnRNP D in regulated mRNA degradation in humans has become clearer, and a putative mRNA deadenylase, DAN or PARN, has been identified. In yeast, the relationship between translation and mRNA turnover is clearer, but the mRNA decapping process has turned out to be unexpectedly complex.


Assuntos
Células Eucarióticas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Animais , Humanos
17.
Nucleic Acids Res ; 28(8): 1684-91, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10734186

RESUMO

The yeast exosome is a complex of 3'-->5' exonucleases involved in RNA processing and degradation. All 11 known components of the exosome are required during 3' end processing of the 5.8S rRNA. Here we report that depletion of each of the individual components inhibits the early pre-rRNA cleavages at sites A(0), A(1), A(2)and A(3), reducing the levels of the 32S, 20S, 27SA(2)and 27SA(3)pre-rRNAs. The levels of the 27SB pre-rRNAs were also reduced. Consequently, both the 18S and 25S rRNAs were depleted. Since none of these processing steps involves 3'-->5' exonuclease activities, the requirement for the exosome is probably indirect. Correct assembly of trans -acting factors with the pre-ribosomes may be monitored by a quality control system that inhibits pre-rRNA processing. The exosome itself degrades aberrant pre-rRNAs that arise from such inhibition. Exosome mutants stabilize truncated versions of the 23S, 21S and A(2)-C(2)RNAs, none of which are observed in wild-type cells. The putative helicase Dob1p, which functions as a cofactor for the exosome in pre-rRNA processing, also functions in these pre-rRNA degradation activities.


Assuntos
Complexos Multienzimáticos/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Hidrólise , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
18.
Mol Cell Biol ; 20(8): 2650-9, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10733567

RESUMO

Two core small nucleolar RNP (snoRNP) proteins, Nop1p (fibrillarin in vertebrates) and Nop58p (also known as Nop5p) have previously been reported to be specifically associated with the box C+D class of small nucleolar RNAs (snoRNAs). Here we report that Nop56p, a protein related in sequence to Nop58p, is a bona fide box C+D snoRNP component; all tested box C+D snoRNAs were coprecipitated with protein A-tagged Nop56p. Analysis of in vivo snoRNP assembly indicated that Nop56p was stably associated with the snoRNAs only in the presence of Nop1p. In contrast, Nop58p and Nop1p associate independently with the snoRNAs. Genetic depletion of Nop56p resulted in inhibition of early pre-rRNA processing events at sites A(0), A(1), and A(2) and mild depletion of 18S rRNA. However, Nop56p depletion did not lead to codepletion of the box C+D snoRNAs. This is in contrast to Nop58p, which was required for the accumulation of all tested box C+D snoRNAs. Unexpectedly, we found that Nop1p was specifically required for the synthesis and accumulation of box C+D snoRNAs processed from pre-mRNA introns and polycistronic transcripts.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/biossíntese , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas , Proteínas de Saccharomyces cerevisiae , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Biossíntese de Proteínas , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Saccharomyces cerevisiae
19.
J Biol Chem ; 275(12): 8361-8, 2000 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-10722667

RESUMO

Mex67p is essential for nuclear poly(A)(+) RNA export in yeast, but which specific transcripts are transported by Mex67p is not known. We observed that thermosensitive mex67-5 cells do not produce a heat shock response at 37 degrees C but will induce heat shock proteins (Hsp) (e.g. Hsp104p and Hsp70p) when shifted back from the restrictive to permissive temperature (30 degrees C). This memory of a previous heat stress in mex67-5 cells could be explained if HSP mRNAs accumulated inside the nucleus during heat shock and were exported and translated in the cytoplasm on return to the permissive temperature. To test this hypothesis, nuclear export of heat shock mRNAs was directly analyzed by in situ hybridization using fluorescent-labeled oligonucleotide probes specific for SSA transcripts. This revealed that Mex67p is required for nuclear export of heat shock mRNAs. Furthermore, other polymerase II transcripts encoding the transcriptional repressor ASH1 and the glycolytic enzyme PGK1 are shown to require Mex67p for their export into the cytoplasm. Thus, Mex67p is an mRNA export factor for a broad range of polymerase II transcripts.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases , Transporte Biológico , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
EMBO J ; 18(19): 5399-410, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10508172

RESUMO

The yeast nuclear exosome contains multiple 3'-->5' exoribonucleases, raising the question of why so many activities are present in the complex. All components are required during the 3' processing of the 5.8S rRNA, together with the putative RNA helicase Dob1p/Mtr4p. During this processing three distinct steps can be resolved, and hand-over between different exonucleases appears to occur at least twice. 3' processing of snoRNAs (small nucleolar RNAs) that are excised from polycistronic precursors or from mRNA introns is also a multi-step process that involves the exosome, with final trimming specifically dependent on the Rrp6p component. The spliceosomal U4 snRNA (small nuclear RNA) is synthesized from a 3' extended precursor that is cleaved by Rnt1p at sites 135 and 169 nt downstream of the mature 3' end. This cleavage is followed by 3'-->5' processing of the pre-snRNA involving the exosome complex and Dob1p. The exosome, together with Rnt1p, also participates in the 3' processing of the U1 and U5 snRNAs. We conclude that the exosome is involved in the processing of many RNA substrates and that different components can have distinct functions.


Assuntos
Exodesoxirribonucleases/metabolismo , RNA Ribossômico/biossíntese , RNA Nuclear Pequeno/biossíntese , RNA Nucleolar Pequeno/biossíntese , Saccharomyces cerevisiae/enzimologia , Sequência de Bases , Exodesoxirribonuclease V , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA