Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(20): 20203-20217, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37797304

RESUMO

Tantalum-based oxide electrodes have recently drawn much attention as promising anode materials owing to their hybrid Li+ storage mechanism. However, the utilization of LiTaO3 electrode materials that can deliver a high theoretical capacity of 568 mAh g-1 has been neglected. Herein, we prepare a layered LiTaO3 electrode formed artificially by restacking LiTaO3 nanosheets using a facile synthesis method and investigate the Li+ storage performance of this electrode compared with its bulk counterpart. The designed artificially layered anode reaches specific capacities of 474, 290, and 201 mAh g-1, respectively, at 56 (>500 cycles), 280 (>1000 cycles), and 1120 mAg-1 (>2000 cycles) current densities. We also determine that the Li+ storage capacity of the layered LiTaO3 demonstrates a cycling-induced capacity increase after a certain number of cycles. Adopting various characterization techniques on LiTaO3 electrodes before and after electrochemical cycling, we attribute the origin of the cycling-induced improvement of the Li+ storage capacity in these electrodes to the amorphization of the electrode after cycling, formation of metallic tantalum during the partially irreversible conversion mechanism, lower activation overpotential of electrodes due to the formation of Li-rich species by the lithium insertion mechanism, and finally the intrinsic piezoelectric behavior of LiTaO3 that can regulate Li+ diffusion kinetics.

2.
Micromachines (Basel) ; 11(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599882

RESUMO

To transform from reactive to proactive healthcare, there is an increasing need for low-cost and portable assays to continuously perform health measurements. The paper-based analytical devices could be a potential fit for this need. To miniaturize the multiplex paper-based microfluidic analytical devices and minimize reagent use, a fabrication method with high resolution along with low fabrication cost should be developed. Here, we present an approach that uses a desktop pen plotter and a high-resolution technical pen for plotting high-resolution patterns to fabricate miniaturized paper-based microfluidic devices with hundreds of detection zones to conduct different assays. In order to create a functional multiplex paper-based analytical device, the hydrophobic solution is patterned on the cellulose paper and the reagents are deposited in the patterned detection zones using the technical pens. We demonstrated the effect of paper substrate thickness on the resolution of patterns by investigating the resolution of patterns on a chromatography paper with altered effective thickness. As the characteristics of the cellulose paper substrate such as thickness, resolution, and homogeneity of pore structure affect the obtained patterning resolution, we used regenerated cellulose paper to fabricate detection zones with a diameter as small as 0.8 mm. Moreover, in order to fabricate a miniaturized multiplex paper-based device, we optimized packing of the detection zones. We also showed the capability of the presented method for fabrication of 3D paper-based microfluidic devices with hundreds of detection zones for conducting colorimetric assays.

3.
Phys Chem Chem Phys ; 19(27): 17708-17717, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28653713

RESUMO

We have synthesized and tested a highly active Cu doped mesoporous CeO2 catalyst system for the low temperature water-gas shift (WGS) reaction. While typical oxide-supported copper WGS catalysts are characterized by high copper loadings (30-40%), the morphological properties of the mesoporous CeO2 material enable high catalytic activity at copper loadings as low as 1%. Operando X-ray diffraction, in situ X-ray absorption near-edge structure spectroscopy (XANES), and operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) methods were used to probe the interactions between the metal and mesoporous oxide components under reaction conditions. Copper was observed to undergo reduction from oxide to metal under WGS conditions at 150 °C, while the CeO2 lattice was observed to expand upon heating, indicating Ce3+ formation correlated with CO2 production. The active state of the catalysts was confirmed by in situ XANES to contain Cu0 and partially reduced CeO2. DRIFTS analysis revealed carboxyl species bound to copper during reduction, as well as formate and carbonate surface species on ceria. Lower concentrations of copper were observed to foster enhanced metal-support interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA