Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanomedicine (Lond) ; 16(9): 741-758, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856243

RESUMO

Aim: The low solubility and consequent poor bioavailability of ibuprofen (IBU) is a major drawback that can be overcome by anchoring IBU on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) as effective multifunctional carriers for drug delivery. Methods: USPIONs were conjugated with glycerol phosphate (USPION-GP) and also co-conjugated with IBU (USPION-GP/IBU), and their in vivo toxicity and anti-inflammatory effects investigated. Phosphate buffer saline (control), IBU, USPION-GP and USPION-GP/IBU were intravenously administered 15 min before lipopolysaccharide-induced peritonitis in male Balb/c mice. Results: 4 h later, USPION bioconjugates did not appear to have caused toxicity to blood leukocytes or caused alterations in the spleen, liver or kidneys. Also, they inhibited lipopolysaccharide-induced neutrophil mobilization into the peritoneum. Conclusion: The absence of systemic toxicity and the unexpected anti-inflammatory action of USPION bioconjugates indicates that they could be a novel and effective approach to administer IBU and warrant further investigation.


Assuntos
Ibuprofeno , Nanopartículas Magnéticas de Óxido de Ferro , Animais , Anti-Inflamatórios/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Disponibilidade Biológica , Ibuprofeno/toxicidade , Masculino , Camundongos , Solubilidade
2.
J Nanosci Nanotechnol ; 21(3): 1451-1461, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404408

RESUMO

A systematic study was carried out to evaluate the uptake and cytotoxicity of methotrexate (MTX) conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) modified with glycerol phosphate (Glyc) and phosphorylethanolamine (PEA), using MCF-7 cancer cell line as model. The ligand shell composition was controlled in such a way to get SPIONs with nine different surface functionalization and up to three co-conjugated ligands but the very iron oxide core, in order to test and compare uptake and cytotoxicity, and verify possible additive effects. Folic acid (FA), the non-toxic analogue of MTX, was also explored as ligand for SPIONs. Glyc was shown to enhance dramatically the cellular uptake despite the high negative zeta potentials, whereas PEA, FA and MTX was found to have a much lower effect on the cellular uptake. Also, a significant ten times lowering of IC50 was observed for the co-conjugated MTX in the SPION-Glyc/PEA/MTX as compared to the free drug, whereas the analogue SPION-Glyc/PEA/FA nanoparticles exhibited no significant cytotoxicity. In short, the conjugation of MTX to SPIONs enhanced dramatically its cytotoxicity and decreased the IC50 value against MCF-7 tumor cells as compared to the free drug, probably due to the enhanced uptake of SPIONs as a result of their surface modification with Glyc/PEA, demonstrating that SPION-Glyc/PEA is a good nanocarrier for co-conjugated methotrexate.


Assuntos
Nanopartículas de Magnetita , Metotrexato , Sobrevivência Celular , Glicerol , Glicerofosfatos , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/toxicidade , Metotrexato/toxicidade , Fosfatos
3.
Nanomedicine (Lond) ; 15(25): 2475-2492, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945229

RESUMO

Aim: To develop a series of superparamagnetic iron oxide nanoparticles (SPIONs) by coconjugating them with ibuprofen (ibu) and glycerol phosphate (glycerol) or ibu and glucose-1-phosphate and to assess capacity of these conjugates to inhibit the release of nitric oxide (NO) in macrophages, even at low concentrations. Materials & methods: The SPION conjugates were characterized and their properties evaluated showing the influence of those ligands on colloidal stability and inhibition of NO-release demonstrated. The cytotoxicity and possible anti-inflammatory activity were evaluated using murine macrophages (RAW 247.6). Results: SPION-glycerol phosphate/ibu conjugates inhibited the NO production induced by lipopolysaccharides, indicating a potential anti-inflammatory activity. Conclusion: SPION conjugated with ibu was shown to inhibit NO-release even at very low concentrations, suggesting possible action against inflammatory diseases.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Animais , Ibuprofeno/farmacologia , Lipopolissacarídeos , Camundongos , Óxido Nítrico , Células RAW 264.7
4.
Colloids Surf B Biointerfaces ; 186: 110717, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31864112

RESUMO

The effect of the ligand shell on the cellular uptake efficiency was evaluated by a systematic study using fully dispersed 6 nm diameter superparamagnetic iron oxide nanoparticles (SPIONs), mono and bis-conjugated with glycerol phosphate (glyc), dopamine (dopa), 4,5-dihydroxy-1,3-benzenedisulfonic acid (tiron) and phosphorylethanolamine (pea). Negatively charged SPION-glyc was more efficiently incorporated than positively charged SPION-pea and SPION-dopa clearly evidencing that there are strong enough short-range interactions in addition to the long-range electrostatic interactions, as measured by the zeta potential, to reverse our expectation on cellular uptake. Those effects were pursued by correlating the nanoparticles incorporation efficiency as a function of the respective zeta potentials and the molar fractions of glyc and pea ligands co-conjugated on the SPION surface. The possibility of associating different ligands to modulate the physicochemical properties and biological events was demonstrated, showing promising perspectives for the development of multifunctional nanosystems for biomedical applications.


Assuntos
Compostos Férricos/farmacocinética , Nanopartículas de Magnetita/química , Compostos Férricos/síntese química , Compostos Férricos/química , Células HeLa , Humanos , Hidrodinâmica , Ligantes , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Distribuição Tecidual , Células Tumorais Cultivadas
5.
Inorg Chem ; 58(15): 10399-10407, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31339710

RESUMO

After more than 40 years, surface-enhanced Raman spectroscopy (SERS) stills attract much attention from chemists, not only because of the synthesis of plasmonic nanostructures but also due to the several simultaneous mechanisms which still remain unclear. One of the possibilities for a better understanding of the SERS mechanisms is the utilization of suitable inorganic complexes. The use of inorganic complexes makes it possible to observe the two main SERS mechanisms (electromagnetic and chemical) and to observe the intensification of Raman scattering due to the resonance Raman effect. In this publication, the observation of these mechanisms was possible utilizing an unpublished and very interesting complex with two oxo-triruthenium acetate clusters and an iron bis(terpyridine) in its structure (seven metals) and which interacted with bare gold nanoparticles and shell-isolated gold nanoparticles (SHIN), with a 1 nm silica shell. The utilization of SHIN allowed to quench the SERS chemical mechanism and led to a spectrum where iron-terpyridine peaks are absent and only the modes related to [Ru3O] center were observed (due to enhancement by resonance Raman, SERRS); it can be said that the the shell-isolated nanoparticles enhanced resonance Raman spectroscopy (SHINERRS) is observed. This approach led to a perfect selection of SERS mechanisms never seen before with any other molecule/complex. As can be seen in the UV-vis spectrum, this complex has a strong band around 700 nm, which suggests that silica shell enhances only surface-enhanced resonance Raman scattering, a long-distance phenomenon, different from chemical enhancement (a short-distance phenomenon). Additionally, along with the Raman spectroscopy results, cyclic voltammetry, UV-vis spectroelectrochemistry, resonance Raman (using 568 and 676 nm lasers), and density functional theory calculations of this new ruthenium cluster are presented.

6.
J Dent ; 77: 66-71, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30009857

RESUMO

OBJECTIVES: To evaluate the antibacterial effects, cytotoxicity and microtensile bond strength of an adhesive containing low concentrations of silver nanoparticles (NAg). METHODS: Various concentrations of NAg (50, 100, 150, 200 and 250 ppm) were incorporated into the primer of the Scotchbond Multi-Purpose adhesive system (SBMP). Antibacterial activity was examined using a broth microdilution assay to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), agar diffusion assay and the MTT assay was used to examine the biofilm metabolic activity (S. mutans). The Microtensile Bond Test (µTBS) was performed after 24 h, followed by 6-months storage in distilled water. Cytotoxicity was assessed with an MTT reduction assay in human dental pulp stem cells viability after exposure to Nag-conditioned culture media during 0, 24, 48, and 72 h. The results were statistically analyzed (α ≤ 0.05). RESULTS: MIC was found between NAg 25 and 50 ppm MBC was determined at 50 ppm of NAg. Bacterial activity inhibition was higher than control in all NAg groups compared to control in agar diffusion assay. Biofilm inhibition was statistically higher in 250 ppm NAg than control. All NAg groups and SBMP presented similar cytotoxicity in each period. Adhesives with NAg 200 and 250 ppm and SBMP (control) presented the highest µTBS values, similar to that of SBMP control, in both instances (24 h and 6 months) (p > 0.05). CONCLUSIONS: The commercial primer containing NAg 250 ppm showed both antibacterial effect and reliable bond strength with no cytotoxicity increase. The addition of NAg to primers seems promising for the improvement of conventional dental adhesives efficacy. CLINICAL SIGNIFICANCE: The addition of low concentrations of NAg (250 ppm) to primers were effective to improve antibacterial effect preserving the bond strength and the biocompatibility of the commercial product. NAg/primer association could protect the tooth-adhesive interface increasing dental restoration longevity.


Assuntos
Antibacterianos/toxicidade , Colagem Dentária , Cimentos Dentários , Nanopartículas Metálicas/toxicidade , Prata , Biofilmes , Humanos , Teste de Materiais , Cimentos de Resina , Resistência à Tração
7.
Anal Bioanal Chem ; 409(28): 6663-6675, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28918472

RESUMO

Size, shape, and surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) can influence their interaction with biological systems, particularly the incorporation by tumor cells and consequently the biological activity and efficiency in biomedical applications. Several strategies have been used to evaluate cellular uptake of SPIONs. While qualitative methods are generally based on microscopy techniques, quantitative assays are carried out by techniques such as inductively coupled plasma-mass spectrometry and flow cytometry. However, inexpensive colorimetric methods based on equipments commonly found in chemistry and biochemistry laboratories are preferred for routine measurements. Nevertheless, colorimetric assays must be used judiciously, particularly when nanoparticles are involved, since their interaction with biological constituents tends to lead to quite underestimated results. Thus, herein described is a colorimetric protocol using 2,2'-bipyridine as chromogenic ligand, where each step was optimized and validated by total reflection X-ray fluorescence spectroscopy, realizing a highly reproducible and reliable method for determination of iron content in cells incubated with SPIONs. The limit of blank and limit of detection were determined to be as low as 0.076 and 0.143 µg Fe/mL, using sample volumes as small as 190 µL and a number of cells as low as 2.0 × 105. Furthermore, three different types of surface-functionalized nanoparticles were incorporated in cells and evaluated through this protocol, enabling to monitor the additive effect of o-phosphorylethanolamine (PEA) and folic acid (FA) conjugation on iron oxide nanoparticles (SPION-PEA and SPION-PEA/FA), that enhanced the uptake by HeLa cells, respectively, by four and ten times when compared to SPIONs conjugated with nonbioactive molecules. Graphical abstract Colorimetric determination of superparamagnetic iron oxide nanoparticles (SPIONs) incorporated by cells.


Assuntos
Meios de Contraste/análise , Etanolaminas/análise , Ácido Fólico/análise , Nanopartículas de Magnetita/análise , Permeabilidade da Membrana Celular , Sobrevivência Celular , Colorimetria/métodos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Etanolaminas/química , Etanolaminas/farmacocinética , Compostos Férricos/análise , Compostos Férricos/química , Compostos Férricos/farmacocinética , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacocinética , Células HeLa , Humanos , Nanopartículas de Magnetita/química
8.
Inorg Chem ; 54(19): 9656-63, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26393946

RESUMO

Surface enhanced Raman spectroelectrochemistry (SERS) spectroelectrochemistry provides a very sensitive technique to investigate the vibrational characteristics of coordination compounds and their particular behavior under the influence of plasmonic surfaces, concomitant with the exploitation of their redox properties and electronic spectra. The results, however, depend upon the mechanisms involved in the intensification of Raman spectra associated with the electromagnetic, resonance Raman and charge-transfer excitation at the Fermi levels. By probing the model complex [(Ru3O)(CH3COO)6(4,4'-bipy)3](n) (n = 1, 0, -1) adsorbed onto rough gold electrode surfaces, contrasting SERS profiles were obtained at several successive redox potentials and oxidation states, which enables a critical discussion on the role of the complex interaction with the gold surface, and the influence of the specific electronic bands in the triruthenium acetate cluster. Density functional theory (DFT) and time-dependent DFT calculations were carried out for the complex bound to an Au20 cluster to show the participation of active lowest unoccupied molecular orbital levels centered on the gold atoms. The corresponding charge-transfer band was predicted around 1200 nm, which supports a charge-transfer interpretation for the SERS response observed at λexc = 1064 nm. The selective enhancement of the vibrational modes was discussed based on the Raman theoretical calculations.

9.
Anal Chim Acta ; 855: 70-5, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542091

RESUMO

A simple and accessible method for molecular analyses down to the picomolar range was realized using self-assembled hybrid superparamagnetic nanostructured materials, instead of complicated SERS substrates such as core-shell, surface nanostructured, or matrix embedded gold nanoparticles. Good signal-to-noise ratio has been achieved in a reproducible way even at concentrations down to 5×10(-11) M using methylene blue (MB) and phenanthroline (phen) as model species, exploiting the plasmonic properties of conventional citrate protected gold nanoparticles and alkylamine functionalized magnetite nanoparticles. The hot spots were generated by salt induced aggregation of gold nanoparticles (AuNP) in the presence of those analytes. Then, the aggregates of AuNP/analyte were decorated with small magnetite nanoparticles by electrostatic self-assembly forming MagSERS hybrid nanostructured materials. SERS peaks were enhanced up to 100 times after magnetic concentration in a circular spot using a magnet in comparison with the respective dispersion of the nanostructured material.


Assuntos
Nanopartículas de Magnetita/química , Análise Espectral Raman/métodos , Aminas/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Azul de Metileno/química , Fenantrolinas/química , Propriedades de Superfície
10.
Analyst ; 137(17): 4045-51, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22816105

RESUMO

The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2':6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.

11.
Langmuir ; 25(19): 11269-71, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19719164

RESUMO

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO2, as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

12.
J Inorg Biochem ; 103(2): 182-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027167

RESUMO

Tetrapyridylporphyrins containing four chloro(2,2'-bipyridine)platinum(II) complexes attached at the meta (3-H(2)TPtPyP) and para (4-H(2)TPtPyP) positions of the peripheral pyridine ligands were synthesized and their interaction with DNA investigated. The compounds were isolated in the solid state and characterized by means of spectroscopic and analytical techniques. According to molecular simulations, the two isomers exhibit contrasting structural characteristics, consistent with a saddle shape configuration for 3-H(2)TPtPyP and a planar geometry for 4-H(2)TPtPyP. Surface plasmon resonance studies were carried out on the interaction of the complexes with calf thymus DNA, revealing a preferential binding of 3-H(2)TPtPyP, presumably at the DNA major grooves.


Assuntos
DNA/química , Metaloporfirinas/química , Compostos Organoplatínicos/química , Compostos de Platina/química , Porfirinas/química , Animais , Bovinos , Ligantes , Compostos Organoplatínicos/síntese química , Porfirinas/síntese química , Ressonância de Plasmônio de Superfície
13.
J Mass Spectrom ; 44(3): 361-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18942068

RESUMO

The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (micro(3)-O)(micro-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever's E(L) parameters. In fact, excellent linear correlations of ln(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes.

14.
Inorg Chem ; 43(11): 3521-7, 2004 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15154817

RESUMO

Two novel ruthenium polypyridine complexes, [Ru(bpy)(2)Cl(BPEB)](PF(6)) and ([Ru(bpy)(2)Cl](2)(BPEB))(PF(6))(2) (BPEB = trans-1,4-bis[2-(4-pyridyl)ethenyl]benzene), were synthesized and their characterization carried out by means of elemental analysis, UV-visible spectroscopy, positive ion electrospray (ESI-MS), and tandem mass (ESI-MS/MS) spectrometry, as well as by NMR spectroscopy and cyclic voltammetry. Cyclic and differential pulse voltammetry for the mononuclear complex showed three set of waves around 1.2 V (Ru(2+/3+)), -1.0 V (BPEB(0/)(-)), and -1.15 (BPEB(-/2-)). This complex exhibited aggregation phenomena in aqueous solution, involving pi-pi stacking of the planar, hydrophobic BPEB ligands. According to NMR measurements and variable-temperature experiments, the addition of beta-cyclodextrin (betaCD) to [Ru(bpy)(2)Cl(BPEB)](+) leads to an inclusion complex, breaking down the aggregated array.


Assuntos
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/síntese química , Ciclodextrinas/química , Compostos Organometálicos/síntese química , Rutênio/química , beta-Ciclodextrinas , Ciclodextrinas/síntese química , Óxido de Deutério , Eletroquímica , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA